{ "cells": [ { "cell_type": "markdown", "id": "c49b5055-cb25-4563-966d-430aebe0f434", "metadata": {}, "source": [ "# Webshop - Spend data\n", "Data from a webshop, with purchases distributed on the different age groups, from a webshop" ] }, { "cell_type": "code", "execution_count": 1, "id": "efeae42d-4556-483c-99ae-06e7f81216a2", "metadata": {}, "outputs": [], "source": [ "# Module\n", "import numpy as np\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "\n", "# sklearn\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.linear_model import LinearRegression" ] }, { "cell_type": "code", "execution_count": 2, "id": "7a0abee4-5bb6-4188-9613-94b9755bd8c7", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
AgeSpend
01710070
11713278
21711468
31715234
41819482
\n", "
" ], "text/plain": [ " Age Spend\n", "0 17 10070\n", "1 17 13278\n", "2 17 11468\n", "3 17 15234\n", "4 18 19482" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Import data\n", "df = pd.read_excel('spend_age.xlsx', skiprows=2)\n", "df.head()" ] }, { "cell_type": "markdown", "id": "672cbad3-ee2e-40ce-a6f5-a24e0d673cdb", "metadata": {}, "source": [ "# Spend pr. age group - MEAN" ] }, { "cell_type": "code", "execution_count": 3, "id": "070be659-f98c-4c96-baff-135b146069c4", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
AgeSpend
01712512.500000
11817790.888889
21920788.916667
32023932.700000
42127676.416667
52232052.142857
62334245.428571
72439489.428571
82537243.727273
92639468.538462
102741980.500000
112839081.727273
122941279.666667
133041053.100000
\n", "
" ], "text/plain": [ " Age Spend\n", "0 17 12512.500000\n", "1 18 17790.888889\n", "2 19 20788.916667\n", "3 20 23932.700000\n", "4 21 27676.416667\n", "5 22 32052.142857\n", "6 23 34245.428571\n", "7 24 39489.428571\n", "8 25 37243.727273\n", "9 26 39468.538462\n", "10 27 41980.500000\n", "11 28 39081.727273\n", "12 29 41279.666667\n", "13 30 41053.100000" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "group_age_spend = df[['Age', 'Spend']].groupby(['Age'], as_index=False).mean().sort_values(by='Age')\n", "group_age_spend" ] }, { "cell_type": "code", "execution_count": 4, "id": "5ae59ceb-adea-49a6-a0c3-8d912a0805e2", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEICAYAAAC9E5gJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAc9klEQVR4nO3df7xVdZ3v8ddbEH/kD1BODgEFJf2gpiE7g3ZrJsPSA/2A5uH0wJpAo+gHNjVjP7BpsjQeaTUx4+P649JIoplIZgNjGJLh7XbvgB4TUTSvR8QBRDkJ+CNvGva5f6zPqdV273M258fe5wzv5+OxHmetz/e71vqsvc/en71+7L0UEZiZ2YHtoGYnYGZmzediYGZmLgZmZuZiYGZmuBiYmRkuBmZmhouB2X6TFJKOb3YeZv3JxcBqkrRV0nOSRlfE78w3xAlNSs3M+pmLgfXkIeCMrglJfwoc3rx0/uuQNLzZOfSGpGHNzsH6n4uB9eRqYE5pei5wVbmDpEMkfVPSf0p6TNLlkg7LtlGSbpTUKWlPjo8rzXurpAsk/W9JT0m6uXJPpNR3dM6/V9JuSf9L0kHZtlXSuZLuzfV8R9KhpXnfJWljzvt/JL2+1LZV0mckbZL0hKTrKub9rKSdkh6R9KHuHqzcnq9Juk3Sk5JWSjom2ybkHtU8Sf8J/LSHZb0z98KelLRN0pcr2udIeljS45L+Mbfj7dl2kKSFkh7M9hVdedRY1+dK2/jh8qEwSVdKukzSakm/Bt4m6TW5rXslbZb0norH4MOl6TMl/bw0HZL+VtIWSb+S9I2u59Gax0+A9WQ9cFS++IcBs4HvVvS5EHglMAU4HhgLfCnbDgK+A7wMeCnw/4D/XjH/+4GzgBcDI4DP1MjlHGA70AIcB3wBKP+eygeA04BXZD5fBJD0BmAp8FHgWOB/AKskHVKa931AGzAReD1wZs7blvm8A5gEvL1GbmVzgA8BY4B9wMUV7W8FXpO5dufXuayRwDuBj0ualXlNBi7NbR4DHE3xuHf5JDAr1/USYA9wSbWV5Db+PcW2HQ+cXKXb+4FFwJHABuDfgZspnrNPAtdIelUP21P2XqAVOAGYSfF4WTNFhAcPVQdgK8UbxBeBr1G8Wa4FhlO8CU8ARPGm9YrSfG8CHqqxzCnAntL0rcAXS9OfAH5cY97zgZXA8TVy/VhpegbwYI5fBlxQ0f9+4K2lef+m1PZ14PIcXwpcWGp7ZW77C3IobU+5/2TgOWBYPl4BvLyXz8c/A4tz/EvAtaW2w3M9b8/p+4BTSu1jgN8Cw6ssdynwtdL08eVtBK4Eriq1/wXwKHBQKXYt8OXSY/DhUtuZwM9L0wG0VTzntzT7//1AH4bkMUtruKuBn1F8ar6qoq2F4o3oDkldMVG8+SHpcGAxRSEZle1HShoWEc/n9KOl5T0DHFEjj28AXwZuznUtiYgLS+3bSuMPU3wihmKvZK6kT5baR5Taq+XQ1fYS4I6K5fakMo+DgdE12muSdCLFXtfrMt9DgO+X8vr9ciLiGUmPl2Z/GfBDSb8rxZ6n2KPaUbGqlwDtPeRXjr0E2BYR5WU/zB/vmfSk1nNlTeLDRNajiHiY4kTyDOCGiuZfURz6eW1EjMzh6IjoekM/B3gVcGJEHAX8ZcbFfoqIpyLinIh4OfAe4O8lnVLqMr40/lLgkRzfBiwq5TcyIg6PiGvrWO3OKsvtSWX/31I8Tr/flDqWAfA9YBUwPiKOBi7nD4/bTqB87uUwikNgXbYB0yu2+dCIqCwEL1hWRf7Vcn4EGF9xnP+l/KHI/Jo/vsjgT6osr9ZzZU3iYmD1mgdMi4hfl4P56fDbwGJJLwaQNFZS1/HwIymKxd48gXlebxPIk8DHq9gteILik2750+kCSeNyPf8AXJfxbwMfk3SiCi/Kk7NH1rHaFcCZkibnXk49+f9Nqf/5wPWlvaD9cSSwOyJ+I2kqxXH7LtcD75b03ySNoNhjKhfYy4FFkl4GIKlF0swa61kBnJXnhQ4H/rGHvDZQ7D19TtLBkk4G3g0sz/aNwF9JOjxPQs+rsozPqri4YDzwKf7wXFmTuBhYXSLiwYhor9H8eaADWC/pSeAnFHsDUBznPozik/F64Md9SGNSLvtp4D+ASyNiXan9exQnNbcADwJfzdzbgY9QnLjek7meWc8KI+Km3Iaf5nzdXgGUrqY4zv4ocCjwt9U6SXqppKcl1drb+ARwvqSnKM4RrCjltZnixO1yik/2TwO7gGezy79Q7FXcnPOvB07sZhsvBtblNq7Ppmdr9H+O4s1/OsXzeikwJyJ+mV0WU5y/eAxYBlxTZTErKQ6/bQR+BFxR4zGwBlGEb25jQ5+krRQnLX/S5DxuBb4bEf/a4PUeAewFJkXEQ31c1muAe4BDImJfP6RXufygyLOjv5dtvec9A7MhStK781DMi4BvAndTXBnVm2W9V8X3RUYBFwH/PhCFwAYvFwOzoWsmxYnXRygOoc2O3u/qf5TiMNODFOdiPt4vGdqQ4cNEZmbmPQMzM2Pofuls9OjRMWHChGanYWY2pNxxxx2/ioiWyviQLQYTJkygvb3WlY5mZlaNpKrfovdhIjMzczEwMzMXAzMzw8XAzMxwMTAzM1wMzMwMFwMzM8PFwMzMcDEwMzOG8DeQzWxomLDwR/2ynK0XvrNflmPVec/AzMxcDMzMzIeJzMxeoD8ObQ21w1ouBmZmDTKYi4wPE5mZWf3FQNIwSXdKujGnJ0raIKlD0nWSRmT8kJzuyPYJpWWcm/H7JZ1WirdlrEPSwn7cPjMzq8P+7Bl8CrivNH0RsDgijgf2APMyPg/Yk/HF2Q9Jk4HZwGuBNuDSLDDDgEuA6cBk4Izsa2ZmDVJXMZA0Dngn8K85LWAacH12WQbMyvGZOU22n5L9ZwLLI+LZiHgI6ACm5tAREVsi4jlgefY1M7MGqXfP4J+BzwG/y+ljgb0RsS+ntwNjc3wssA0g25/I/r+PV8xTK/4CkuZLapfU3tnZWWfqZmbWkx6LgaR3Absi4o4G5NOtiFgSEa0R0drS8oL7OZuZWS/Vc2npm4H3SJoBHAocBfwLMFLS8Pz0Pw7Ykf13AOOB7ZKGA0cDj5fiXcrz1IqbmVkD9FgMIuJc4FwASScDn4mID0j6PnA6xTH+ucDKnGVVTv9Htv80IkLSKuB7kr4FvASYBNwGCJgkaSJFEZgNvL+/NtCsWYbab/IMtXytf/XlS2efB5ZL+ipwJ3BFxq8ArpbUAeymeHMnIjZLWgHcC+wDFkTE8wCSzgbWAMOApRGxuQ95mZnZftqvYhARtwK35vgWiiuBKvv8BvjrGvMvAhZVia8GVu9PLmZmg/kbvUONv4FsZmYuBmZm5mJgZma4GJiZGS4GZmaGi4GZmeFiYGZmuBiYmRm+7aXZkOOfjbCB4D0DMzNzMTAzMxcDMzPDxcDMzHAxMDMzXAzMzAwXAzMzo45iIOlQSbdJukvSZklfyfiVkh6StDGHKRmXpIsldUjaJOmE0rLmSnogh7ml+Bsl3Z3zXCxJA7CtZmZWQz1fOnsWmBYRT0s6GPi5pJuy7bMRcX1F/+kU9zeeBJwIXAacKOkY4DygFQjgDkmrImJP9vkIsIHijmdtwE2YmVlD9LhnEIWnc/LgHKKbWWYCV+V864GRksYApwFrI2J3FoC1QFu2HRUR6yMigKuAWb3fJDMz2191nTOQNEzSRmAXxRv6hmxalIeCFks6JGNjgW2l2bdnrLv49irxannMl9Quqb2zs7Oe1M3MrA51FYOIeD4ipgDjgKmSXgecC7wa+HPgGODzA5VkKY8lEdEaEa0tLS0DvTozswPGfl1NFBF7gXVAW0TszENBzwLfAaZmtx3A+NJs4zLWXXxclbiZmTVIPVcTtUgameOHAe8AfpnH+skrf2YB9+Qsq4A5eVXRScATEbETWAOcKmmUpFHAqcCabHtS0km5rDnAyv7cSDMz6149VxONAZZJGkZRPFZExI2SfiqpBRCwEfhY9l8NzAA6gGeAswAiYrekC4Dbs9/5EbE7xz8BXAkcRnEVka8ksobxT0Kb1VEMImIT8IYq8Wk1+gewoEbbUmBplXg78LqecjEzs4HhbyCbmZmLgZmZuRiYmRkuBmZmhouBmZnhYmBmZrgYmJkZLgZmZoaLgZmZUd/PUZgNCv7ZCLOB4z0DMzNzMTAzMxcDMzPDxcDMzHAxMDMzXAzMzIz6bnt5qKTbJN0labOkr2R8oqQNkjokXSdpRMYPyemObJ9QWta5Gb9f0mmleFvGOiQtHIDtNDOzbtSzZ/AsMC0i/gyYArTlvY0vAhZHxPHAHmBe9p8H7Mn44uyHpMnAbOC1QBtwqaRheTvNS4DpwGTgjOxrZmYN0mMxiMLTOXlwDgFMA67P+DJgVo7PzGmy/ZS80f1MYHlEPBsRD1HcI3lqDh0RsSUingOWZ18zM2uQus4Z5Cf4jcAuYC3wILA3IvZll+3A2BwfC2wDyPYngGPL8Yp5asWr5TFfUruk9s7OznpSNzOzOtRVDCLi+YiYAoyj+CT/6oFMqps8lkREa0S0trS0NCMFM7P/kvbraqKI2AusA94EjJTU9dtG44AdOb4DGA+Q7UcDj5fjFfPUipuZWYPUczVRi6SROX4Y8A7gPoqicHp2mwuszPFVOU22/zQiIuOz82qjicAk4DbgdmBSXp00guIk86p+2DYzM6tTPb9aOgZYllf9HASsiIgbJd0LLJf0VeBO4IrsfwVwtaQOYDfFmzsRsVnSCuBeYB+wICKeB5B0NrAGGAYsjYjN/baFZmbWox6LQURsAt5QJb6F4vxBZfw3wF/XWNYiYFGV+GpgdR35mpnZAPA3kM3MzMXAzMxcDMzMDBcDMzPDxcDMzKjv0lKz/eIb15sNPd4zMDMzFwMzM3MxMDMzXAzMzAwXAzMzw8XAzMxwMTAzM1wMzMwMFwMzM6O+O52Nl7RO0r2SNkv6VMa/LGmHpI05zCjNc66kDkn3SzqtFG/LWIekhaX4REkbMn5d3vHMzMwapJ49g33AORExGTgJWCBpcrYtjogpOawGyLbZwGuBNuBSScPyTmmXANOBycAZpeVclMs6HtgDzOun7TMzszr0WAwiYmdE/CLHn6K4//HYbmaZCSyPiGcj4iGgg+KOaFOBjojYEhHPAcuBmZIETAOuz/mXAbN6uT1mZtYL+3XOQNIEiltgbsjQ2ZI2SVoqaVTGxgLbSrNtz1it+LHA3ojYVxGvtv75ktoltXd2du5P6mZm1o26i4GkI4AfAJ+OiCeBy4BXAFOAncA/DUSCZRGxJCJaI6K1paVloFdnZnbAqOsnrCUdTFEIromIGwAi4rFS+7eBG3NyBzC+NPu4jFEj/jgwUtLw3Dso9zczswao52oiAVcA90XEt0rxMaVu7wXuyfFVwGxJh0iaCEwCbgNuBybllUMjKE4yr4qIANYBp+f8c4GVfdssMzPbH/XsGbwZ+CBwt6SNGfsCxdVAU4AAtgIfBYiIzZJWAPdSXIm0ICKeB5B0NrAGGAYsjYjNubzPA8slfRW4k6L4mJlZg/RYDCLi54CqNK3uZp5FwKIq8dXV5ouILRRXG5mZWRP4tpcHMN+e0sy6+OcozMzMxcDMzFwMzMwMFwMzM8PFwMzMcDEwMzNcDMzMDBcDMzPDxcDMzHAxMDMzXAzMzAwXAzMzw8XAzMxwMTAzM/wT1kOCf2razAZaPbe9HC9pnaR7JW2W9KmMHyNpraQH8u+ojEvSxZI6JG2SdEJpWXOz/wOS5pbib5R0d85zcd5q08zMGqSew0T7gHMiYjJwErBA0mRgIXBLREwCbslpgOkU9z2eBMwHLoOieADnASdS3NXsvK4Ckn0+Upqvre+bZmZm9eqxGETEzoj4RY4/BdwHjAVmAsuy2zJgVo7PBK6KwnpgpKQxwGnA2ojYHRF7gLVAW7YdFRHrIyKAq0rLMjOzBtivE8iSJgBvADYAx0XEzmx6FDgux8cC20qzbc9Yd/HtVeLV1j9fUruk9s7Ozv1J3czMulF3MZB0BPAD4NMR8WS5LT/RRz/n9gIRsSQiWiOitaWlZaBXZ2Z2wKirGEg6mKIQXBMRN2T4sTzEQ/7dlfEdwPjS7OMy1l18XJW4mZk1SD1XEwm4ArgvIr5ValoFdF0RNBdYWYrPyauKTgKeyMNJa4BTJY3KE8enAmuy7UlJJ+W65pSWZWZmDVDP9wzeDHwQuFvSxox9AbgQWCFpHvAw8L5sWw3MADqAZ4CzACJit6QLgNuz3/kRsTvHPwFcCRwG3JSDmZk1SI/FICJ+DtS67v+UKv0DWFBjWUuBpVXi7cDresrFzMwGhn+OwszMXAzMzMzFwMzMcDEwMzNcDMzMDP+Edb/yT02b2VDlPQMzM3MxMDMzFwMzM8PFwMzMcDEwMzNcDMzMDBcDMzPDxcDMzHAxMDMzXAzMzIz6bnu5VNIuSfeUYl+WtEPSxhxmlNrOldQh6X5Jp5XibRnrkLSwFJ8oaUPGr5M0oj830MzMelbPnsGVQFuV+OKImJLDagBJk4HZwGtznkslDZM0DLgEmA5MBs7IvgAX5bKOB/YA8/qyQWZmtv96LAYR8TNgd0/90kxgeUQ8GxEPUdwHeWoOHRGxJSKeA5YDMyUJmAZcn/MvA2bt3yaYmVlf9eWcwdmSNuVhpFEZGwtsK/XZnrFa8WOBvRGxryJelaT5ktoltXd2dvYhdTMzK+ttMbgMeAUwBdgJ/FN/JdSdiFgSEa0R0drS0tKIVZqZHRB6dT+DiHisa1zSt4Ebc3IHML7UdVzGqBF/HBgpaXjuHZT7m5lZg/Rqz0DSmNLke4GuK41WAbMlHSJpIjAJuA24HZiUVw6NoDjJvCoiAlgHnJ7zzwVW9iYnMzPrvR73DCRdC5wMjJa0HTgPOFnSFCCArcBHASJis6QVwL3APmBBRDyfyzkbWAMMA5ZGxOZcxeeB5ZK+CtwJXNFfG2dmZvXpsRhExBlVwjXfsCNiEbCoSnw1sLpKfAvF1UZmZtYk/gaymZm5GJiZmYuBmZnhYmBmZrgYmJkZLgZmZkYvv4E81E1Y+KN+Wc7WC9/ZL8sxM2s27xmYmZmLgZmZuRiYmRkuBmZmhouBmZnhYmBmZrgYmJkZLgZmZkYdxSBveL9L0j2l2DGS1kp6IP+OyrgkXSypQ9ImSSeU5pmb/R+QNLcUf6Oku3OeiyWpvzfSzMy6V8+ewZVAW0VsIXBLREwCbslpgOkUt7qcBMwHLoOieFDcIe1EihvZnNdVQLLPR0rzVa7LzMwGWI/FICJ+BuyuCM8EluX4MmBWKX5VFNZT3Ox+DHAasDYidkfEHmAt0JZtR0XE+rwf8lWlZZmZWYP09pzBcRGxM8cfBY7L8bHAtlK/7RnrLr69SrwqSfMltUtq7+zs7GXqZmZWqc8nkPMTffRDLvWsa0lEtEZEa0tLSyNWaWZ2QOhtMXgsD/GQf3dlfAcwvtRvXMa6i4+rEjczswbqbTFYBXRdETQXWFmKz8mrik4CnsjDSWuAUyWNyhPHpwJrsu1JSSflVURzSssyM7MG6fF+BpKuBU4GRkvaTnFV0IXACknzgIeB92X31cAMoAN4BjgLICJ2S7oAuD37nR8RXSelP0FxxdJhwE05mJlZA/VYDCLijBpNp1TpG8CCGstZCiytEm8HXtdTHmZmNnD8DWQzM3MxMDMzFwMzM8PFwMzMcDEwMzNcDMzMDBcDMzPDxcDMzHAxMDMzXAzMzAwXAzMzw8XAzMxwMTAzM1wMzMwMFwMzM8PFwMzM6GMxkLRV0t2SNkpqz9gxktZKeiD/jsq4JF0sqUPSJkknlJYzN/s/IGlurfWZmdnA6I89g7dFxJSIaM3phcAtETEJuCWnAaYDk3KYD1wGRfGguJXmicBU4LyuAmJmZo0xEIeJZgLLcnwZMKsUvyoK64GRksYApwFrI2J3ROwB1gJtA5CXmZnV0NdiEMDNku6QND9jx0XEzhx/FDgux8cC20rzbs9YrfgLSJovqV1Se2dnZx9TNzOzLsP7OP9bImKHpBcDayX9stwYESEp+riO8vKWAEsAWltb+225ZmYHuj7tGUTEjvy7C/ghxTH/x/LwD/l3V3bfAYwvzT4uY7XiZmbWIL0uBpJeJOnIrnHgVOAeYBXQdUXQXGBljq8C5uRVRScBT+ThpDXAqZJG5YnjUzNmZmYN0pfDRMcBP5TUtZzvRcSPJd0OrJA0D3gYeF/2Xw3MADqAZ4CzACJit6QLgNuz3/kRsbsPeZmZ2X7qdTGIiC3An1WJPw6cUiUewIIay1oKLO1tLmZm1jf+BrKZmbkYmJmZi4GZmeFiYGZmuBiYmRkuBmZmhouBmZnhYmBmZrgYmJkZLgZmZoaLgZmZ4WJgZma4GJiZGS4GZmaGi4GZmeFiYGZmDKJiIKlN0v2SOiQtbHY+ZmYHkkFRDCQNAy4BpgOTgTMkTW5uVmZmB45BUQyAqUBHRGyJiOeA5cDMJudkZnbAUHFr4iYnIZ0OtEXEh3P6g8CJEXF2Rb/5wPycfBVwPzAa+FUD0+0r5zuwnO/Acr4DqxH5viwiWiqDwwd4pf0qIpYAS8oxSe0R0dqklPab8x1YzndgOd+B1cx8B8thoh3A+NL0uIyZmVkDDJZicDswSdJESSOA2cCqJudkZnbAGBSHiSJin6SzgTXAMGBpRGyuc/YlPXcZVJzvwHK+A8v5Dqym5TsoTiCbmVlzDZbDRGZm1kQuBmZmNnSKgaSlknZJuqci/klJv5S0WdLXm5VfNdVyljRF0npJGyW1S5razBy7SBovaZ2ke/Ox/FTGj5G0VtID+XdUs3OFbvP9Rv4/bJL0Q0kjm5zq79XKudR+jqSQNLpZOZZ1l+9gfN118z8xWF9zh0q6TdJdme9XMj5R0ob8aZ7r8qKagRcRQ2IA/hI4AbinFHsb8BPgkJx+cbPzrCPnm4HpOT4DuLXZeWYuY4ATcvxI4P9S/DTI14GFGV8IXNTsXHvI91RgeMYvGiz5dpdzTo+nuIDiYWB0s3Pt4TEelK+7bvIdrK85AUfk+MHABuAkYAUwO+OXAx9vRD5DZs8gIn4G7K4Ifxy4MCKezT67Gp5YN2rkHMBROX408EhDk6ohInZGxC9y/CngPmAsxc+CLMtuy4BZTUmwQq18I+LmiNiX3dZTfGdlUOjmMQZYDHyO4v9jUOgm30H5uusm38H6mouIeDonD84hgGnA9Rlv2GtuyBSDGl4J/EXuUv1PSX/e7ITq8GngG5K2Ad8Ezm1uOi8kaQLwBopPKsdFxM5sehQ4rll51VKRb9mHgJsanlAdyjlLmgnsiIi7mptVbRWP8aB/3VXk+2kG6WtO0jBJG4FdwFrgQWBv6QPNdv7wgWFADfViMBw4hmLX6rPACklqbko9+jjwdxExHvg74Iom5/NHJB0B/AD4dEQ8WW6LYr910Hxyhdr5SvoHYB9wTbNyq6WcM0WOXwC+1MyculPlMR7Ur7sq+Q7a11xEPB8RUyj2YKcCr25WLkO9GGwHbsjdrduA31H80NNgNhe4Ice/T/EPMChIOpjiRXRNRHTl+JikMdk+huITzKBQI18knQm8C/hAFrBBo0rOrwAmAndJ2krxpvALSX/SvCz/oMZjPGhfdzXyHbSvuS4RsRdYB7wJGCmp6wvBDftpnqFeDP6N4mQWkl4JjGDw/0LhI8Bbc3wa8EATc/m9/GR3BXBfRHyr1LSK4sVE/l3Z6NyqqZWvpDaKY+/viYhnmpVfNdVyjoi7I+LFETEhIiZQvNGeEBGPNjFVoNv/iX9jEL7uusl3sL7mWrqudpN0GPAOivMc64DTs1vjXnPNPJu+PwNwLbAT+C3FC2YexT/hd4F7gF8A05qdZx05vwW4A7iL4njmG5udZ+b6FopDQJuAjTnMAI4FbqF4Af0EOKbZufaQbwewrRS7vNm59pRzRZ+tDJ6riWo9xoPydddNvoP1Nfd64M7M9x7gSxl/OXBb/i9/n7xqa6AH/xyFmZkN+cNEZmbWD1wMzMzMxcDMzFwMzMwMFwMzM8PFwMzMcDEwMzPg/wM30Fsd9uW60gAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.title('Mean spend pr. age group')\n", "plt.bar(x='Age', height='Spend', data=group_age_spend)\n", "plt.savefig(\"./image/spend_3.jpg\")" ] }, { "cell_type": "markdown", "id": "25e81c8a-4aea-4927-8ec5-969b7bf801a3", "metadata": {}, "source": [ "# Data Preprocessing\n", "Now that we have imported the dataset, we will perform data preprocessing." ] }, { "cell_type": "code", "execution_count": 76, "id": "9e8485cf-7733-4a0f-829f-d28dd4194f28", "metadata": {}, "outputs": [], "source": [ "X = df.iloc[:,:-1].values # Independent variable array\n", "y = df.iloc[:,1].values # Dependent variable vector" ] }, { "cell_type": "markdown", "id": "8c87bbe5-42de-4181-b5d1-6dd66d855f41", "metadata": {}, "source": [ "# Splitting the dataset" ] }, { "cell_type": "code", "execution_count": 77, "id": "f5ecaa22-ae4d-424e-a294-dc34578ea3ee", "metadata": {}, "outputs": [], "source": [ "X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=1/3,random_state=0)" ] }, { "cell_type": "markdown", "id": "bdc15e9d-7ce9-4e11-a83d-10172cf16c32", "metadata": {}, "source": [ "# Fitting linear regression model into the training set" ] }, { "cell_type": "code", "execution_count": 78, "id": "748273c6-8ef6-4f68-9c64-c3dd154acce5", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "LinearRegression()" ] }, "execution_count": 78, "metadata": {}, "output_type": "execute_result" } ], "source": [ "regressor = LinearRegression()\n", "regressor.fit(X_train, y_train) # Produces the linear eqn for the data" ] }, { "cell_type": "markdown", "id": "c62e817f-4400-408b-83bc-3f987f823f5d", "metadata": {}, "source": [ "# Predicting the test set results" ] }, { "cell_type": "code", "execution_count": 79, "id": "337819b1-a216-46db-8ff1-d600e5e9abe6", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([25461.22770811, 44053.17263994, 31658.54268538, 37855.85766266,\n", " 23395.45604901, 21329.68438992, 27526.9993672 , 37855.85766266,\n", " 37855.85766266, 29592.77102629, 33724.31434447, 35790.08600357,\n", " 33724.31434447, 44053.17263994, 37855.85766266, 27526.9993672 ,\n", " 25461.22770811, 37855.85766266, 31658.54268538, 39921.62932175,\n", " 29592.77102629, 21329.68438992, 44053.17263994, 33724.31434447,\n", " 27526.9993672 , 35790.08600357, 44053.17263994, 29592.77102629,\n", " 35790.08600357, 29592.77102629, 23395.45604901, 41987.40098084,\n", " 37855.85766266, 35790.08600357, 23395.45604901, 31658.54268538,\n", " 35790.08600357, 44053.17263994, 25461.22770811, 46118.94429903,\n", " 46118.94429903, 27526.9993672 , 23395.45604901, 29592.77102629,\n", " 25461.22770811, 46118.94429903, 31658.54268538, 19263.91273083,\n", " 44053.17263994, 27526.9993672 , 21329.68438992])" ] }, "execution_count": 79, "metadata": {}, "output_type": "execute_result" } ], "source": [ "y_pred = regressor.predict(X_test) \n", "y_pred" ] }, { "cell_type": "code", "execution_count": 80, "id": "9d2862a3-dc06-4863-9fcc-2608d465038a", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([26406, 49005, 32489, 36158, 20050, 18393, 30071, 38745, 42642,\n", " 28975, 39254, 39897, 38734, 49919, 36548, 24514, 22712, 41263,\n", " 34656, 47833, 33351, 14198, 33910, 39666, 29684, 39849, 38680,\n", " 30793, 37845, 33147, 18255, 39082, 42891, 33357, 21503, 35738,\n", " 33427, 45351, 26334, 44254, 33655, 29463, 22794, 34693, 22134,\n", " 47623, 31656, 11468, 32666, 25676, 19044], dtype=int64)" ] }, "execution_count": 80, "metadata": {}, "output_type": "execute_result" } ], "source": [ "y_test" ] }, { "cell_type": "markdown", "id": "a1b68452-54ed-49d9-8683-cdca10fa0835", "metadata": {}, "source": [ "- y_test is the real salary of the test set.\n", "- y_pred are the predicted salaries." ] }, { "cell_type": "markdown", "id": "0823a81e-d6ff-40a0-ac10-7244c908d165", "metadata": {}, "source": [ "# Visualizing the results\n", "Let’s see what the results of our code will look like when we visualize it.\n", "\n", "- Plotting the points (observations)\n", "- Plotting the regression line" ] }, { "cell_type": "code", "execution_count": 86, "id": "0a0e3eb3-402c-42f0-a4f0-0d2e3a226b76", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEWCAYAAACnlKo3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAyEklEQVR4nO3de5zcdX3v8dc7mwQJAZJARCRkg4pYsIpkRThYpXjkVtvQU6pwVkmR0xQiircjUB4VUDnVtoqhVTQUMJiVi7cSfaAYK17bAIsgV5VVEkgEEgj3KJDkc/74fofM7s7s7szOby7Z9/PxmMfMfH6X+c4kO5/5fa+KCMzMzOoxqdUFMDOzzuUkYmZmdXMSMTOzujmJmJlZ3ZxEzMysbk4iZmZWNycRsxaT9DeSfjrKPj+T9LoGv26vpO81et9WkfTnkq5udTkmGicRawhJP5T0mKQdWl2W7Y2kPweeiohbJX1B0tP59pyk58uef6eW80ZEX0Qc2eh9m0HSPEkhaXIpFhHfAg6Q9JoWFm3CcRKxcZM0D/gTIIC/aG1ptkunAl8GiIhTI2J6REwH/h9wdel5RBxTOqD8y3WCuRJY1OpCTCROItYIJwGrgC8BC8s3SNpN0rckPSnpZkmfKK+6kfQqSSslbZT0K0lvr/QCkt4hqX9I7AOSVuTHx0q6W9JTktZJ+vBYCl7tOEmHS1or6e8lPSJptaTesuN2kPQvku6X9HC+QthxyLEfkrRe0oOSTh7ymazIn8lNwMtHKN9U4AjgR2N4L6slnSnpduAZSZMlnSXpN/n93S3pL8v2H1SNln/ZnyrpXkmPS/qcJNWxb5ekT+fP7T5Jpw+9ahhS7jPzZ/9U/j/wlhyfVFb+RyVdI2lWPuzH+f7xfBV2aH7+Q+DPRvusrIEiwjffxnUDBoDFwHzgeWCPsm1X5ds0YH/gAeCnedtO+fnJwGTgdcAjwP4VXmMa8BSwb1nsZuCE/PhB4E/y45nAQWMse8XjgMOBzcBngB2ANwPPAPvl7RcCK4BZwM7At4B/HHLsx4ApwLHAJmBm2WdyTX7/rwbWlT6TCuU7AHimyrbzgOVlz1cDtwF7Azvm2F8DLyX9YHxHfg975m1/U/66pCvJbwMzgLnABuDoOvY9FbgbmJM/0+/n/SdXeA/75f8DL83P5wEvz4/PIP04mZP/Db4IXFm237Bz5n+PAHZp9d/FRLm1vAC+dfYNeCMpceyen/8S+EB+3JW37Ve2/yfYlkTeAfxkyPm+CJxb5bWWAx/Nj/clJZVp+fn9wN/V+uVR7biyRLBTWewa4B8A5S/jl5dtOxS4r+zY35d/wQHrgUPKPpNXlW37f1RPIocBD1XZdh7Dk8i7R3m/twEL8uNKieGNQ97vWXXs+wPg78q2/c9KX/h52yvyZ/M/gSlDtt0DvKXs+Z75s5s8QhKZkuNzW/23MVFurs6y8VoIfC8iHsnPv8K2Kq3ZpD/4B8r2L3/cDbwhV4c8LulxoBd4SZXX+gpwYn78v4H/iIhN+flfkX7xr5H0o7LqjdGMdNxjEfFM2fM1pF/1s0lXRreUlfu7OV7yaERsLnu+CZhO5c9kzQjle4x0pTNW5edF0kmSbisr56uB3Uc4/qEKZa5135dS/d98kIgYAN5PSojrJV0l6aV5czfwzbKy3wNsAfYYoUylz+rxEfaxBnISsbrlNoC3A2+W9JCkh4APAK+V9FpSFcdmUnVEyd5ljx8AfhQRM8pu0yPitCovuRKYLelAUjL5SmlDRNwcEQuAFwP/QfplPKpRjpspaaey53OB35Gq3H4PHFBW7l0jNXaPpvSZlH8Oc0fYfwCQpL3GcG5Iv8IhHdQNXAKcDuwWETOAO0lXUkV6kOr/5sNExFci4o2kpBHAp/KmB4Bjhvz/eFFErKPsfQ7xR8DqiHhyfG/BxspJxMbjONIvw/2BA/Ptj4CfACdFxBbgG8B5kqZJehWpEb7k28ArJb1L0pR8e72kP6r0YhHxPPBV4J9Jdd8rITU+K41j2DXv8ySwdbTCj/G48/N+fwK8DfhqRGwlfTlfKOnF+Vx7STpqtNes8Jnsz5DOCEP2f47UpvDm0c5dwU6kL9sNuYwnk65EinYNcEb+TGYAZ1bbUdJ+ko5Q6hr+B1JyLv0bfAG4ICdDJM2WtCBv25D3e9mQU74ZqKmrs42Pk4iNx0Lg8oi4PyIeKt2AfwN6c2+c04FdSVUfXyZ1wXwWICKeAo4ETiD9wn+I9Ct0pLEmXyHVn391SHXRu4DVkp4kNez2Akiam3vvVPu1X/G47CFSddLvgD7g1Ij4Zd52JukqYVU+9vukRuKxOJ1U9fMQqUfb5aPs/8VczppExN3Ap4H/Bh4G/hj4Wa3nqcMlwPeA24FbgetIV19bKuy7A/BJ0tXdQ6QrwrPztiWkzgvfk/QUqZH9DQC5GvMC4Ge5uuuQfMyJpM/LmkQRXpTKmkfSp4CXRETVX9/tQNLhpEbrOaPs2hSSfgacHhG3trostZJ0DPCFiOgu+HX+HHhXRFTsJm7FmKgDkqxJchXWVOAO4PXAKcD/aWmhOlBEHNbqMoxVbiv7U9LVyB7AucA3i37dSCPWv1X069hghVZn5cFPd+TeIf05NktpcNm9+X5mjkvSRZIGJN0u6aCy8yzM+98raWFZfH4+/0A+tugGQ6vdzqQ2gGeAq0nVK9e2tERWNAHnk6oCbyX1qvpoS0tkhSm0OkvSaqCnrPsnkv4J2BgRn5R0FmkA1pmSjgXeS+pu+QZgSUS8IY9Q7Qd6SI2EtwDzI+IxpdG+7wNuJNW7XhQRblQzM2uSVjSsLwCW5cfLSD18SvErIlkFzJC0J3AUsDIiNkbEY6QeOUfnbbtExKpImfCKsnOZmVkTFN0mEqSeFQF8MSKWkqbEeDBvf4htA4f2YvCgpLU5NlJ8bYX4iHbfffeYN29e7e/EzGwCu+WWWx6JiNlD40UnkTdGxLrcl36lpF+Wb4yIyAmmUJIWkWf2nDt3Lv39/aMcYWZm5SRVnFmh0OqsPLKUiFhP6p1xMPBwrooi36/Pu69j8MjWOTk2UnxOhXilciyNiJ6I6Jk9e1giNTOzOhWWRCTtJGnn0mPSoLI7SYOHSj2sFrKtp84K4KTcS+sQ4Ilc7XU9cKSkmbkn15HA9Xnbk5IOyb2yTsK9fszMmqrI6qw9SJOnlV7nKxHxXUk3A9dIOoU08VxpYNB1pJ5ZA6TJ3E4GiIiNkj5OmvYb4GMRsTE/Xkwa8bsjaaoD98wyM2uiCTdivaenJ9wmYmZWG0m3RETP0LjnzjIzs7o5iZjZ9qGvD+bNg0mT0n1fX6tLNCF47iwz63x9fXDyyfD88+n5mjXpOUBvb/XjbNx8JWJmne+MM7YlkJLnn09xK5STiJl1vkcfrS1uDeMkYmZmdXMSMbPOt9tutcWtYZxEzKzzLVkCU6cOjk2dmuJWKCcRM+t8vb1w2WXQ3Q1Sur/sMvfMagInETPbPvT2wurVsHVrum9kAvEYlKo8TsTMbCR9ffDud8Nzz6Xna9ak5+ArHXwlYmbbi6KuFs44Y1sCKXnuOY9ByZxEzKzz9fXBokXpKiEi3S9a1JhE0uljUAquinMSMbPOd845sGnT4NimTSk+kRWZXDMnETPrfPffX1u8Fh08BiX+/hy06RlEIIItTGp4cnUSMbPON3dubfFaLFkCU6YMjk2Z0tZjUFavTj2dJ92/elC8i63pQSOSa+YkYmad74ILYNq0wbFp01J8vHp74fLLB49BufzytuyZ9dnPpiLus8/g+OdYTKBtgUYk16zwJCKpS9Ktkr6dn39J0n2Sbsu3A3Ncki6SNCDpdkkHlZ1joaR7821hWXy+pDvyMRfltdbNbKLp7YWlSwd/0S9d2rgv+iLHoDTA7runt/2BDwyOr/nsN4mpO7CYi7cFp05tTHLNmnElcgZwz5DY/42IA/Ptthw7Btg33xZBeteSZgHnAm8ADgbOlTQzH3Mx8Ldlxx1d4Psws3Y2AQcbSuk2tKPY1q2pHX3u7pvSg3INXhK90CQiaQ7wZ8C/j2H3BcAVkawCZkjaEzgKWBkRGyPiMWAlcHTetktErIq0UPwVwHGFvBEzm7ia0MOpVqXkMVREur2w7ZxzKq+z0kEN658FPgKl1pwXXJCrrC6UtEOO7QU8ULbP2hwbKb62QtzMJqKirhbapPvw00+PnjyGKbLXWlZYEpH0NmB9RNwyZNPZwKuA1wOzgDOLKkNZWRZJ6pfUv2HDhqJfzsyarcirhSZ8EY9k5cqUOHbeeXD8lFNGSB4lRfZay4q8EjkM+AtJq4GrgCMkLY+IB3OV1bPA5aR2DoB1wN5lx8/JsZHicyrEh4mIpRHRExE9s2fPHv87M7P2UuTVQhO+iCv5q79KyePIIwfHf/rTlDj+fSyNBEX2WssKSyIRcXZEzImIecAJwA8i4p25LYPck+o44M58yArgpNxL6xDgiYh4ELgeOFLSzNygfiRwfd72pKRD8rlOAq4t6v2YWRsr8mqhCV/E5UpVVt/4xuD473+fksdhh9VwsqJ7rdGacSJ9ku4A7gB2Bz6R49cBvwUGgEuAxQARsRH4OHBzvn0sx8j7/Hs+5jfAd5r0HsysHkW1WxR5tdCEL2IYvb3jRS+q88QFd09WNLi7V7vr6emJ/v7+VhfDbOIptVuUVztNm9aYL+Qiz12gLVtgcpUFOdrtq1nSLRHRMzTuEetm1hxFtls06WqhUVatSsWslEBGbSxvM04iZtYcRfdyavNR5QBve1tKHoceOjj+vvd1XvIo8cqGZtYcc+emrreV4tu5ahMy/epX8MpXNrcsjeYrETNrjib3cmoH1RrLS9OSNCWBLF6c6s1K9WeLFzf09E4iZtYcvb2wcCF0daXnXV3peRtWO43XmKclKdrixXDxxakFH9L9xRc3NJE4iZhZc/T1wbJlg7/Qli1rm8kMx2v9+jqmJSna0qW1xevgJGJmzdEmc1A12qc/nRLHHnsMjr/sZW3QWF5K2GON18FJxMy2KXLK8xbPQTUuFT6X0lXHhz88eNdvfjMljt/8phUFHaJUdTjWeB2cRMw6TVENpUVPed6iOajGbcjnojWr0TuHt+Nsykt3HHdc84tY1aJFtcXr4CRi1kmKbCgturqpU3tn5c9FBGJ43VSpymrHHVtQttF8/vNw2mmDOzOcdlqKN4iTiFkn+eIXa4vXohmDATtoVDnAs8+SrjwqJQ9Nalx7R5HViIcdBnPmpM98zpwaZ3AcnZOIWSfZOnR9t1HitejU6qYC/Ou/pu/cSpMeRr4madjnUmQ1YjNWZYyICXWbP39+mHWsbbUnw2/jtXx5xLRpg885bVqKN0LR52+Aah/tzjxRXLm7uyu/aHd3W50b6I8K36m+EjHrJFOn1havRdHVTW3cxbfa+I6f/CR96z65/FvFfS5FViM2oUec584y6yQ77wyPPlo53gi9vcW1UbRhF99qI8ebOrZj1qzK/6azZo3/3E2Yr8xXImadZOPG2uK1KrKBt43aXGoaWd6MdoWidPLyuGZWgKFfCKPFa1H0l2WLu/jefnud05IUXQ1X5A+DZvSIq9RQ0sgb0AXcCnw7P98HuJG0pO3VwNQc3yE/H8jb55Wd4+wc/xVwVFn86BwbAM4aS3ncsG4dbdKkyg2lkyaN/9xFNvCWLF+eziel+yY0qr/ylePsiyBVPlhqTAGb8bk3AC1sWD8DuKfs+aeACyPiFcBjwCk5fgrwWI5fmPdD0v7ACcABOWl8XlKXpC7gc8AxwP7AiXlfs+1XkV18m9Fm0cSFo0pXHb/+9eD4Rz9a45xWRVfDdeogzKzQJCJpDvBnwL/n5wKOAL6Wd1kGHJcfL8jPydvfkvdfAFwVEc9GxH2kq46D820gIn4bEc8BV+V9zbZfk6r8yVaL16JaQ24jGnhLimxzyapVWT31VEoc559f4wmL/pLvwEGY5Yq+Evks8BGg9DNpN+DxiNicn68F9sqP9wIeAMjbn8j7vxAfcky1uNn2q9rcGm0558YQBbe5jNbeMX16nSfu8C/5ohWWRCS9DVgfEbcU9Ro1lGWRpH5J/Rs2bGh1cczqN7SBd7R4LYru+VVAA/WTTzZpDY8iq+E6ufcXxV6JHAb8haTVpKqmI4AlwAxJpfEpc4B1+fE6YG+AvH1X4NHy+JBjqsWHiYilEdETET2zZ88e/zsza5Ui6+eLrvtvYJvLu96VEseuuw7f1tDk0QxtPAhzLApLIhFxdkTMiYh5pIbxH0REL3ADcHzebSFwbX68Ij8nb/9B7hGwAjhB0g6S9gH2BW4Cbgb2lbSPpKn5NVYU9X7M2kKR9fNF1/03IEmVrjqWLx++reOSR0kbDsKsRSvGiZwJfFDSAKnN49IcvxTYLcc/CJwFEBF3AdcAdwPfBd4TEVtyu8npwPWk3l/X5H3Ntl9F1s8XXfc/jiRVrcrqhhs6OHmUtNEgzHooOvrTr11PT0/09/e3uhhmE1NfX6qmuf/+9CV5wQUjJqm2mJakaKU2kfIqrWnT2q7xXtItEdEzNO65s8ysecY4N9eESB4lpc+jhuTaTjztiZm1he98Z5w9rZowBqUwTRyE2WhOImadppO/LCsoJY5jjx2+bcztHX198O53D+4m++53N+6z2c4+80ZyEjFrtCK/cDp8TEG5alcdixfX0Vh+xhnw3HODY889l+LjtR195kVww7pZIxXdSDpvXuX1Ibq7UzVIB6jW3vHMM+OYjLjaSWH8DSnbwWfeCNUa1p1EzBqp6C+cSZMqfylKjZmEsUCFNpYXmUQ6+DNvpGpJxNVZZo1U9MCxZkyS2EAbNjRpWpIiJ6bs8HEcRXMSMWukor9wnn22tniLHHFEShwvfvHwbYUMDixyivwOn6q9aE4iZo1U9BfO00/XFm+y0lXHDTcM31boyPLu7tritfAsviNyEjFrpN5eWLgQurrS866u9Hw7/8KpVmX13/89JHkU1XOtGWt+dOg4jqI5iZg1Ul8fLFsGW7ak51u2pOeN+rLcbbfa4gUbrb3jkEPKgkV2lfXVQss4iZg1UtHTei9ZAlOmDI5NmZLiTRJRZ2N5J0957sGGVTmJmDVSpe69I8Vr1dsLl18++Bf35Zc35Rf3lVeml6zU4WlM7R1FfjZFXuV4sOGIPE7ErJEmT95WlVWuqws2bx4e7wANG4JR5GdT5PgcDzYEPE7ErDkqfUmOFG9j1aqsPvShOntaFfnZFDk+p8MXjSqak4hZI7VZw3c9qiWPZ59NieNf/qXOExfZDbeTlw3ucE4iZp2moEbe0RrLp04d5wt06tK+Hmw4sogo5Aa8iLQW+i+Au4Dzc/xLwH3Abfl2YI4LuAgYAG4HDio710Lg3nxbWBafD9yRj7mI3MYz0m3+/PlhVhip9J07+CY15vzLl0dMmzb43NOmpXgd1qypXFxoTHGHWb48ors7fR7d3XWXu6LTTovo6kqF7+pKzxulyHJ3CKA/Kn3XVwo24paTwvT8eApwI3BITiLHV9j/WOA7+bhDgBtzfBbw23w/Mz+embfdlPdVPvaY0crlJGKF6u6u/I3c3d1W599jjyYnj6I1OLnacNWSSGHVWfl1S3MxTMm3kZriFgBX5ONWATMk7QkcBayMiI0R8RiwEjg6b9slIlblN3gFcFxR78dsTC64YNto9ZKursZVfYyzkbdUZfXww8O31dVY3i46eQxKhyu0TURSl6TbgPWkRHBj3nSBpNslXShphxzbC3ig7PC1OTZSfG2FeKVyLJLUL6l/w4YN431bZtX97GfDextt2ZLijVBnI2+19o6bb27StCRFcw+qlik0iUTElog4EJgDHCzp1cDZwKuA15OqqM4ssgy5HEsjoiciembPnl30y9lEtnRpbfFa1djIO1pjeU95r/+il5gtvUYRSco9qFqmKb2zIuJx4Abg6Ih4MFdZPQtcDhycd1sH7F122JwcGyk+p0LcrHWKHicyhjmiot5pSYpcYhaKHfntHlQtU1gSkTRb0oz8eEfgrcAvc1sGkkRqw7gzH7ICOEnJIcATEfEgcD1wpKSZkmYCRwLX521PSjokn+sk4Nqi3o9tZ4r6RTy0PWS0eD2qzCj76U+Pc1qSRx+tLV6rItstPAFj61RqbW/EDXgNcCupu+6dwEdz/Aekbrl3AsvZ1oNLwOeA3+TtPWXnejepG+8AcHJZvCef5zfAv+EuvjYWRfbkOe20yl2eGtnddIhqvaxq7mnVsBNVUXT3Z6usQd2TaXYX33a9OYlY4d1wixyvUKba9/1HPlLnCYv+ki/6c7fhGviDqVoS8QSMNvE0bEbB1qhW/OefT3McNvzE0JjPpdQmUl6lNW2aq52K1MDJIz0Bo1lJM9otCjBaY/m4EggUO7cVuN2iFZrQ9dlJxCaeontQNbDR/q676uxpVY9m9HDq1GVmO3X8TBO6PjuJ2MRT5C/uvj44+eTB3VhPPrnmL51S4nj1q4dva3jyKPGVQmWdvCjVscfWFq+D20Rs4imybn733St3id1tN3jkkVEP7/Dmmu1TJy9K5TYRswL09sLChdvaQLq60vNG/OKuc6xFtSqr227r8DmttgedPKWK20TMCtDXB5dcsq0NZMuW9LwF1ROjtXe89rVNL5IN1clTqrhNxKwAp546fE3vzZtTfLzGsLLh5s1NbCy38evkKVWaUHYnEZt4nn66tngtliwZ3td28mRYsoT3vS8ljilThh/m5NHGOrnDQRPK7oZ1m3iKbL0u9c56/vltLzfCMjoT7M/POpgb1s2a4ZxzXkggIiomkI98xFceHadTx4k0wXjHuJp1nunTK1ddTZ8+/nOvWVP1ymPLlsoz7FqbK62zUpomv7TOCnRGlVbB/F/aJp4vfKFyu8UXvjCu00qVq64CEV2TnUA6VdHrrHS4Ea9EJH1wpO0R8ZnGFsesCXp703K1S5emy4OuLvjbv63rV+Xdd8MBB1TeFpS1vTRqShVrvqLXWelwo1Vn7Zzv9yMtZ7siP/9z4KaiCmVWqL4+WLZs8DiRZcvgsMPGnEimTYPf/77ytkHJo6RRkxiatZkRL7Aj4vyIOJ+09OxBEfGhiPgQMB/ogJE2ZhWMY4W90viOoQnk1a/OjeXL+zp3TIFVNoaxPxPZWGtp9wDKKwWfyzGzzlNpLqGR4lQfHHj//Sl53HFHDnTymAKrbMmS4YN7pkxJcRtzErkCuEnSeZLOA24Elo10gKQXSbpJ0i8k3SXp/BzfR9KNkgYkXS1pao7vkJ8P5O3zys51do7/StJRZfGjc2xA0lm1vXWbsGpYT2S0keV7713hPJ063blV1tsLl18++IfB5Zf73zUb82BDSfOBN+anP46IW0fZX8BOEfG0pCnAT4EzgA8C34iIqyR9AfhFRFwsaTHwmog4VdIJwF9GxDsk7Q9cCRwMvBT4PvDK/DK/Bt4KrAVuBk6MiLtHKpcHG9pogw2ffx6mTq262WxCasRgw9uArwLfBB6VNGKbSF6Wt9QZf0q+BXAE8LUcXwYclx8vYNvVzdeAt+REtAC4KiKejYj7gAFSQjkYGIiI30bEc8BVeV/bXhQ1wKvKlcg/6BNIlROIBweaVTamwYaS3gucCzwMbAFESgivGeW4LuAW4BXA54DfAI9HRGn2u7XAXvnxXsADABGxWdITwG45vqrstOXHPDAk/oYq5VgELAKY2wkzb9rwNT9KCwHB+KsRhnS3fWFsR4Uk4cRhNrKxXomcAewXEQdExGsi4o8jYsQEAhARWyLiQFLvroOBV9Vf1PpFxNKI6ImIntmzZ7eiCFarcfSgGlXublttWpIvf9lXHmZjNdYk8gDwRL0vEhGPAzcAhwIzJJWugOYA6/LjdcDeAHn7rsCj5fEhx1SL2/agwMV0tGZ1xeSx9ct9RMA73znulzCbMMaaRH4L/DD3kvpg6TbSAZJmS5qRH+9IagC/h5RMjs+7LQSuzY9X5Ofk7T+I1Oq/Ajgh997aB9iXNNDxZmDf3NtrKnAC2wZDWqebNau2+BhU7WnVPY9Y3ofe6d42ZrUa6wSM9+fb1Hwbiz2BZbldZBJwTUR8W9LdwFWSPgHcClya978U+LKkAWAjKSkQEXdJuga4G9gMvCcitgBIOh24HugCLouIu8ZYNpsgbr+9+uqA26qrVjepNGbbn5rWE5E0LSI2jb5n+3IX3w4xaVLlRgkpjb8YxcyZ8Pjjlbe5rcOsduPq4ivp0HwF8cv8/LWSPt/gMpptU+fa0KUqq6EJ5O1vd2O5WRHG2ibyWeAoUkM3EfEL4E0FlckMjj22pni19o5HHkmJ4+qrG1g2M3vBmBeliogHNPiv1HNbW3Guu25M8WqDz33FYdYcY+7iK+l/ACFpiqQPk3pamRVjhEkS//CH0ee0MrPmGGsSORV4D2mk+O+AA/Nzs2JUmJrkXM5DBDvuOHx3Jw+z1hhTdVZEPAK4E701T9nUJNXWLAcnDrNWG2vvrJdJ+pakDZLWS7pW0suKLpxNYN3dVacl+e53feVh1i7GWp31FeAa0gDCl5Jm872yqELZxCalqUmGimk7Ecv7OOqo4ceYWWuMNYlMi4gvR8TmfFsOvKjIgtnEU7WxHBFdk2HhQi8EZNZmxppEviPpLEnzJHVL+ghwnaRZkuqfzMgmvP7+EZLHtJ0I8oYtW2DZssatKWJmDTHWJPJ24O+AH5AmUDyNNLfVLYDnEJmoFi+GyZNTBpg8OT0fo513Toe9/vXDt0WkSRELmwrezBpmxCQi6fWSXhIR+0TEPsD5wJ3At4D5Oe4G9olo8WK4+OJtvai2bEnPR0kkpauOp58eHH/ve4c0lhc4FbyZNc5oVyJfBJ4DkPQm4B9JS9g+ASwttmjW1pZW+eevEq9WZfXEEylxXHTRkA11zp1lZs01WhLpioiN+fE7gKUR8fWI+AfSkrc2UW2pMuvN0KVnRxlZvssuVc5f49xZZtYaoyaRslUI30JqEykZ87xbth2qMKK8FH/mmQZMSzLGubPMrLVGSyJXAj+SdC3we+AnAJJewTiWy7XtwKJFw0Jn8km0ZTPTpw/fvebBgW4TMesII15NRMQFkv6TNMjwe7FtBatJwHuLLpy1sc/n5WSWLkVbNlfdre5R5XPnVp6E0W0iZm1l1C6+EbEqIr4ZEc+UxX4dET8f6ThJe0u6QdLdku6SdEaOnydpnaTb8u3YsmPOljQg6VeSjiqLH51jA5LOKovvI+nGHL86r7VuTaKLP18xgfzXfzVgWpILLoBp0wbHpk1LcTNrG2MdJ1KPzcCHImJ/4BDgPZL2z9sujIgD8+06gLztBOAA4Gjg85K68hrtnwOOAfYHTiw7z6fyuV4BPAacUuD7sWy09o5DD23Ai/T2pp5e3d3pxbq703OPWDdrK4UlkYh4sHS1EhFPkdYf2WuEQxYAV0XEsxFxHzAAHJxvAxHx24h4DrgKWKC0QtYRwNfy8cuA4wp5MwZ4DQ8zG67IK5EXSJoHvA64MYdOl3S7pMskzcyxvYAHyg5bm2PV4rsBj0fE5iHxSq+/SFK/pP4NGzY04i1NGCNOS1Jk8ujrS433a9akF1mzJj33tCdmbaXwJCJpOvB14P0R8SRwMfBy0sJWDwKfLroMEbE0Inoiomf27NlFv9x24eUvH2VakiB9oc+bB5MmpftGfsGfc46nPTHrAIUmEUlTSAmkLyK+ARARD0fElojYClxCqq4CWAfsXXb4nByrFn8UmFE2jqUUt3EoXXX89reD4//2b0OuPIq+UnAXX7OOUFgSyW0WlwL3RMRnyuJ7lu32l6S5uABWACdI2kHSPsC+wE3AzcC+uSfWVFLj+4rc3fgG4Ph8/ELg2qLez/auWpXV73+fcsR7hi6GXPSVgqc9MesIRV6JHAa8CzhiSHfef5J0h6TbgT8FPgAQEXeRFr66G/gu8J58xbIZOB24ntQ4f03eF+BM4IOSBkhtJJcW+H62S6O1d7yo2qoxRV8puIuvWUdQTLBuNT09PdHfP7Fnr3/ySdh118rbxvzfYd68yoMBu7th9eo6SzZEX1+6srn//nQFcsEF7uJr1iKSbomInqHxpvTOsvZw3nnpqqNSAqm5p1UzrhR6e1NC2ro13TuBmLUdT6I4AVSqrgJ405vgRz+q86SlL3RfKZhNaE4i27FqyeOXv4T99mvAC/T2OmmYTXCuztoOVW0s755HLO9rTAIxM8NXItuValceQd6wBjj55PTYVxBm1gC+EulwAwMjXHnstvu2BFLy/PNwxhnNKZyZbfecRDrUBz+YEse++w6Ov/WtZT2tHn208sHV4mZmNXIS6TClq44LLxwc/9nPUuL43veaWJgi584ys47gNpEOUa29Y/Pm6sudM306PP105fh4lebOKk19Upo7C9zeYjaB+EqkzY02LUnVBAKwww61xWvhWXbNDCeRtrRpU4PW8CiyTcSz7JoZTiJt5WtfS4ljp52Gb6trAahqlykjXr6M0axZtcXNbLvkJNIGLrkkJY+//uvB8SVLxrl64JYttcVr8Yc/1BY3s+2SG9ZbaPFiuPji4fH166EhCzB2dVVOGI24EnnmmdriZrZdchJpgZ12Gt4mDQWsV17klYiZGa7OapqIbY3l5Qnkta8dZ5XVSLq7a4vXYrfdaoub2XbJSaRgTzyREsekIZ/0P/5jShy33Vbgixe55seSJTB16uDY1KkpbmYTRpFrrO8t6QZJd0u6S9IZOT5L0kpJ9+b7mTkuSRdJGpB0u6SDys61MO9/r6SFZfH5eandgXxslSF5zdffn5LHjBmD4//1Xyl5nHVWEwrR2wtLl6YrDyndL13amMGAvb1w2WWDz33ZZR5oaDbBFLY8rqQ9gT0j4ueSdgZuAY4D/gbYGBGflHQWMDMizszrr78XOBZ4A7AkIt4gaRbQD/QAkc8zPyIek3QT8D7gRuA64KKI+M5I5Sp6edwLL0zzWg21cSPMnFnYy5qZFara8riFNaxHxIPAg/nxU5LuAfYCFgCH592WAT8EzszxKyJltVWSZuREdDiwMiI25jeyEjha0g+BXSJiVY5fQUpSIyaRohx2WLrKGGrr1upTlpiZdbqmtIlImge8jnTFsEdOMAAPAXvkx3sBD5QdtjbHRoqvrRCv9PqLJPVL6t+wYcP43sywc6fb0ARSaiwfNYEsXgyTJ6cdJ09Oz83MOkThSUTSdODrwPsj4snybfmqo5j6tMGvszQieiKiZ3YDBmA8/3zlaUlOPrnGnlalgSKlLrdbtqTnjUwknmnXzApUaBKRNIWUQPoi4hs5/HCupiq1m6zP8XXA3mWHz8mxkeJzKsQLs3p1ShxDOyV99aspcVx2WY0nXLq0tnitSjPtrlmTCliaadeJxMwapMjeWQIuBe6JiM+UbVoBlHpYLQSuLYuflHtpHQI8kau9rgeOlDQz9+Q6Erg+b3tS0iH5tU4qO1cB7wf22Wdw7L770nfz8cfXedKiBwN6pl0zK1iRI9YPA94F3CHpthz7e+CTwDWSTiGt+v32vO06Us+sAWATcDJARGyU9HHg5rzfx0qN7MBi4EvAjqQG9aY0qj/77PCrkba0Zk1tcTOzGhXWxbddFd3FtyYjtbo34t9l8uTqc2dt3jz+85vZhFGti69HrLdS0VOHeO4sMyuYk8j2zPNbmVnBnERaqciVB83MmsBJpJWKXHkQ0lwrtcTNzGrkJNJKRbdZzJ1bW9zMrEZOIq1U5HofUOxU8GZmOIm0VtFf8kVOBW9mhpfHba3Sl/k558D996dqpgsuaOyXfG+vk4aZFcZJpNX8JW9mHczVWWZmVjcnETMzq5uTiJmZ1c1JxMzM6uYkYmZmdXMSMTOzujmJmJlZ3ZxExqKvD+bNg0mT0r3XKDczA4pdY/0ySesl3VkWO0/SOkm35duxZdvOljQg6VeSjiqLH51jA5LOKovvI+nGHL9aUjEL1vb1waJFaUnZiHS/aJETiZkZxV6JfAk4ukL8wog4MN+uA5C0P3ACcEA+5vOSuiR1AZ8DjgH2B07M+wJ8Kp/rFcBjwCmFvItzzoFNmwbHNm1KcTOzCa6wJBIRPwbGunDFAuCqiHg2Iu4DBoCD820gIn4bEc8BVwELJAk4AvhaPn4ZcFwjy/+C+++vLW5mNoG0ok3kdEm35+qumTm2F/BA2T5rc6xafDfg8YjYPCRekaRFkvol9W/YsKG20npNDjOzqpqdRC4GXg4cCDwIfLoZLxoRSyOiJyJ6Zs+eXdvBXpPDzKyqpiaRiHg4IrZExFbgElJ1FcA6YO+yXefkWLX4o8AMSZOHxBvPa3KYmVXV1CQiac+yp38JlHpurQBOkLSDpH2AfYGbgJuBfXNPrKmkxvcVERHADcDx+fiFwLWFFby3F1avhq1b030jE4i7D5tZBytsPRFJVwKHA7tLWgucCxwu6UAggNXA3wFExF2SrgHuBjYD74mILfk8pwPXA13AZRFxV36JM4GrJH0CuBW4tKj3UphS9+FS769S92HwlY6ZdQSlH/UTR09PT/T397e6GMm8eSlxDNXdna54zMzahKRbIqJnaNwj1seiqCondx82sw7nJDKaIkesu/uwmXU4J5HRFDli3d2HzazDOYmMpsgqJ3cfNrMOV1jvrO3G3LmVG78bVeXU2+ukYWYdy1cio3GVk5lZVU4io3GVk5lZVa7OGgtXOZmZVeQrETMzq5uTiJmZ1c1JxMzM6uYkYmZmdXMSMTOzujmJmJlZ3ZxEzMysbk4iZmZWNycRMzOrW2FJRNJlktZLurMsNkvSSkn35vuZOS5JF0kakHS7pIPKjlmY979X0sKy+HxJd+RjLpKkot6L10E3M6usyCuRLwFHD4mdBfxnROwL/Gd+DnAMsG++LQIuhpR0SGuzvwE4GDi3lHjyPn9bdtzQ12qMIhelMjPrcIUlkYj4MbBxSHgBsCw/XgYcVxa/IpJVwAxJewJHASsjYmNEPAasBI7O23aJiFWRFom/ouxcjVXkolRmZh2u2W0ie0TEg/nxQ8Ae+fFewANl+63NsZHiayvEK5K0SFK/pP4NGzbUVmKvg25mVlXLGtbzFUQ06bWWRkRPRPTMnj27toO9DrqZWVXNTiIP56oo8v36HF8H7F2235wcGyk+p0K88bwolZlZVc1OIiuAUg+rhcC1ZfGTci+tQ4AncrXX9cCRkmbmBvUjgevzticlHZJ7ZZ1Udq7G8qJUZmZVFbYolaQrgcOB3SWtJfWy+iRwjaRTgDXA2/Pu1wHHAgPAJuBkgIjYKOnjwM15v49FRKmxfjGpB9iOwHfyrRhelMrMrCKlpomJo6enJ/r7+1tdDDOzjiLplojoGRr3iHUzM6ubk4iZmdXNScTMzOrmJGJmZnWbcA3rkjaQeoa1m92BR1pdiDq57K3hsjdfp5Ybxl/27ogYNlp7wiWRdiWpv1LPh07gsreGy958nVpuKK7srs4yM7O6OYmYmVndnETax9JWF2AcXPbWcNmbr1PLDQWV3W0iZmZWN1+JmJlZ3ZxEzMysbk4iLSDpMknrJd1ZFjtQ0ipJt+VVGA9uZRmrkbS3pBsk3S3pLkln5PgsSSsl3ZvvZ7a6rOVGKPc/S/qlpNslfVPSjBYXdZhqZS/b/iFJIWn3VpWxmpHKLum9+bO/S9I/tbKclYzwf6bt/1YlvUjSTZJ+kct+fo7vI+lGSQOSrpY0ddwvFhG+NfkGvAk4CLizLPY94Jj8+Fjgh60uZ5Wy7wkclB/vDPwa2B/4J+CsHD8L+FSryzrGch8JTM7xT7VbuUcqe36+N2ndnTXA7q0uaw2f+58C3wd2yNte3Oqy1lD2tv9bBQRMz4+nADcChwDXACfk+BeA08b7Wr4SaYGI+DGwcWgY2CU/3hX4XVMLNUYR8WBE/Dw/fgq4h7S+/QJgWd5tGXBcSwpYRbVyR8T3ImJz3m0Vg1fMbAsjfOYAFwIfoUlLTddqhLKfBnwyIp7N29ZXP0trjFD2tv9bjeTp/HRKvgVwBPC1HG/I36mTSPt4P/DPkh4A/gU4u7XFGZ2kecDrSL9y9oi04iTAQ8AerSrXaIaUu9y7KXJxswYoL7ukBcC6iPhFa0s1NkM+91cCf5KrVn4k6fUtLdwohpT9/XTA36qkLkm3kZYhXwn8Bni87EfTWrb9GKmbk0j7OA34QETsDXwAuLTF5RmRpOnA14H3R8ST5dsiXSu35S/jauWWdA6wGehrVdlGU152Uln/HvhoK8s0VhU+98nALFIVy/8lrXiqFhaxqgpl74i/1YjYEhEHkq6uDwZeVcTrOIm0j4XAN/Ljr5L+0duSpCmkP6q+iCiV+WFJe+bte5J+/bSVKuVG0t8AbwN6cwJsOxXK/nJgH+AXklaTvih+LuklrStlZVU+97XAN3K1y03AVtIEgW2lStk75m8VICIeB24ADgVmSCotiz4HWDfe8zuJtI/fAW/Oj48A7m1hWarKvxYvBe6JiM+UbVpB+uMi31/b7LKNpFq5JR1NalP4i4jY1KryjaRS2SPijoh4cUTMi4h5pC/lgyLioRYWdZgR/r/8B6lxHUmvBKbSZrPjjlD2tv9blTS71NNQ0o7AW0ltOjcAx+fdGvJ36hHrLSDpSuBw0i+vh4FzgV8BS0iX+X8AFkfELa0qYzWS3gj8BLiD9OsRUrXKjaSeH3NJPYXeHhFDOw+0zAjlvgjYAXg0x1ZFxKnNL2F11coeEdeV7bMa6ImIdvsirva5fx+4DDgQeA74cET8oBVlrGaEsj9Jm/+tSnoNqeG8i3SxcE1EfEzSy4CrSFWJtwLvLHVuqPu1nETMzKxers4yM7O6OYmYmVndnETMzKxuTiJmZlY3JxEzM6ubk4hZk0g6Ls+2W8jIYbNWcBIxa54TgZ/me7PtgpOIWRPk+ZfeCJwCnJBjkyR9Pq+psVLSdZKOz9vm54kJb5F0fWlKGbN24yRi1hwLgO9GxK+BRyXNB/4XMI+0RsW7SHMbleZr+lfg+IiYTxrZfUErCm02msmj72JmDXAiaaoMSNNOnEj6+/tqRGwFHpJ0Q96+H/BqYGWe2LYLeBCzNuQkYlYwSbNIE/X9saQgJYUAvlntEOCuiDi0SUU0q5urs8yKdzzw5YjozrPu7g3cR1rd8q9y28gepEk5IU3GOVvSC9Vbkg5oRcHNRuMkYla8Exl+1fF14CWkKdzvBpYDPweeiIjnSInnU5J+AdwG/I+mldasBp7F16yFJE2PiKcl7QbcBBzWbmuCmI3EbSJmrfXtvHjQVODjTiDWaXwlYmZmdXObiJmZ1c1JxMzM6uYkYmZmdXMSMTOzujmJmJlZ3f4/C305Ql2W47YAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Plot for the Training set\n", "plt.scatter(X_train, y_train, color='red') # Plotting the observation \n", "plt.plot(X_train, regressor.predict(X_train), color='blue') # Plotting the regression line\n", "plt.title('Age vs. spend (Training set)')\n", "plt.xlabel('Age')\n", "plt.ylabel('Spend')\n", "plt.savefig(\"./image/spend_4.jpg\")\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 87, "id": "c03f74cd-293b-4b3b-89a4-533f80c719ac", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEWCAYAAACnlKo3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAuo0lEQVR4nO3dfZzcZX3v/9c7GxKIgoQkRUrILpWIBc4xwgp41JZihUBtQ3/lWOgiETlGCVjQ2opSD4rQI/UGpaehxoJyk4qIN0SLYsR4d87hZsOtgJYoCUkIJBBCwFQgyef3x3UNmezO7M7Ozndudt/Px2MeM/P53sw1k+x85rr5XpciAjMzs3pMaHUBzMysczmJmJlZ3ZxEzMysbk4iZmZWNycRMzOrm5OImZnVzUnErMUkvVPSz4bZ5/9Iel2TyvMvkj7ajNdqJEl3SDq01eUYb5xErCEk/UjS05Imt7osY42kPwWejYi78xf8c/n2gqQXy55/t45zD0pgEfHeiPhEw97AKFUqo6QvS7p4wK6fBi5qXskMnESsAST1AG8GAviz1pZmTHovcC289AX/8oh4OfAPwFdLzyPihJaWsvWWAn8k6ZWtLsh44iRijXA6cBvwZWB++QZJ0yR9W9IWSXdKurj8V6Wk10haJmmTpF9KenulF5D0l5L6B8TeL2lpfnyipAclPStpnaQP1lLwasdJOkbSWkkfkfSkpFWS+sqOmyzp05IelfREriHsMeDYv5G0QdJ6SWcM+EyW5s/kDuBVQ5RvEnAs8OMa3svRkv6vpM2S7pV0TNm2d0r6dX6fj0jqk/T7wL8Ab8g1mc1535d+5df4Xqr++w4o3+6SrpP0VC7jnZL2zdteIenKfP51+TxdlcooaQHQB/xdjn0bICJ+C6wAjh/us7IGigjffBvVDVgJLASOAF4E9i3bdn2+TQEOAdYAP8vbXpafnwFMBF4HPAkcUuE1pgDPArPLYncCp+TH64E358dTgcNrLHvF44BjgG3AZ4HJwB8CvwEOztsvI/3y3QfYE/g28L8GHHsRsBtwIrAVmFr2mdyQ3/9hwLrSZ1KhfIcCv6my7WPAdfnx/sBT+bUmAG/Nz2fk19lSVvb9gEPz43cOfG3Sj4GLR/BeKv77Vijve/LnNAXoyv9f9srbvgl8IZf1d4A7gPfUUsYB8cuBz7b6b2I83VwTsVGR9CagG7ghIlYAvwL+Km/rAv4CuDAitkbEg8DVZYe/DVgVEV+KiG0RcTfwdeC/D3ydiNgK3AScms89G3gN6YscUvI6RNJeEfF0RNxV41sY7riPRsTzEfFj4N+Bt0sSsAB4f0RsiohnSU1Lpww470UR8WJE3Aw8Bxxc9pn8z4j4TUT8fMBnMtDepOQ5nNOAmyPi5ojYERHLgH7Slz7ADuAwSXtExPqIeKCGc9b6Xqr9+1Y6zzTgoIjYHhErImJLro2cCJyXP5MNpCR9yhDnquZZ0mdmTeIkYqM1H/h+RDyZn/8bO5u0ZpBqGGvK9i9/3A0clZsoNufmlD6gWpv2v5GTCClRfSsnF0hfZicCqyX9WNIbaiz/UMc9HRG/KXu+Gvjd/L6mACvKyv29HC95KiK2lT3fCrycyp/J6iHK9zSppjOcbuC/D/gs3wTsl9/DX5L6VtZL+ndJr6nhnCUjeS/ljwe6FrgFuF7SY5L+UdJuuey75bKVyv4FUo1kpPYENtdxnNVpYqsLYJ0r9wG8HeiS9HgOTwb2lvRa4OekppCZwH/k7QeUnWIN8OOIeGuNL7kMmCFpDimZvL+0ISLuBOblL6VzSM1FB1Q6Sblhjpsq6WVliWRWfk9PAv9JahJaV2PZSzaSPpMDgF+UnbealYAk7T/Ma60Bro2Id1faGBG3ALfkf7OLgS+yczBEvUrvpdq/78AyvAh8HPi40mCMm4Ff5vvngekDktVLh9YYA/h94LpaCm+N4ZqIjcZJwHZSW/icfPt94KfA6RGxHfgG8DFJU/Kv39PLjv8O8GpJ75C0W769PnemDpK/hL4GfIrUF7EMUudz7ih+Rd5nC6n5Zkg1HvfxvN+bSc1vX4uIHaQv4csk/U4+1/6Shu3QrfCZHMKAwQgD9n8B+AGpT2Yo1wF/Kun43CG9e+4UnylpX0nzJL2M9GX9XNn7fAKYmTvwR6SGf99dSPojSf8lN4NtITVv7YiI9cD3gc9I2kvSBEmvklR6z5XK+ATwewPOvzupn2XZSN+L1c9JxEZjPvCliHg0Ih4v3YD/DfRJmkj6df8K4HFSc8ZXSF9k5L6E40ht34/lfS4l1Waq+Tfgj0lf5uW/Wt8BrJK0hdRs0wcgaVYewVPt137F47LHSc1JjwFLgPdGRKn28CFSLeG2fOwPgIOHKHe5c0jNQY+TOoi/NMz+X8jlrCoi1gDzgI+QaghrgL8l/Y1PAD6Q38cmUkI6Kx/6Q+AB4HFJTzJyVf99K3glcCMpgTxEGnF2bd52OjAJeJD0md9IGgBQrYxXkvqyNkv6Vo79KfCjiHisjvdhdVKEF6Wy5pF0KfDKiKj667sdKA2PvS4iZra4KEC6Yh04Jw8+aFut/PeVdDtwZh6sYE3iPhErVG7imATcD7weOBP4Hy0tVAeKiDe2ugyVtNO/b0Qc1YrXHe+cRKxoe5KaOH6X1I79GdJQXRsb/O87zrk5y8zM6uaOdTMzq9u4a86aPn169PT0tLoYZmYdZcWKFU9GxIyB8XGXRHp6eujv7x9+RzMze4mkijMruDnLzMzq5iRiZmZ1cxIxM7O6OYmYmVndnETMzKxuhSYRpSVF75d0j/LSppL2UVoO9eF8PzXHJelySSsl3Sfp8LLzzM/7Pyxpfln8iHz+lflYFfl+zMwKsWQJ9PTAhAnpfsmSVpeoZs2oifxRRMyJiN78/Hzg1oiYDdyanwOcAMzOtwXAFZCSDnAhcBRwJHBhKfHkfd5ddtzc4t+OmVkDLVkCCxbA6tUQke4XLOiYRNKK5qx57FxC82rSmhSl+DWR3EZa2Gg/4HhgWV6G9GnSWgFz87a9IuK2SHO3XFN2LjOzznDBBbB1666xrVtTvAMUnUQC+L6kFZIW5Ni+eREaSGsQ7Jsf78+uS2uuzbGh4msrxAeRtEBSv6T+jRs3jub9mJk11qOPjizeZopOIm+KiMNJTVVnS/qD8o25BlH4DJARsTgieiOid8aMQVftm5m1zqwq66VVi7eZQpNIaU3oiNgAfJPUp/FEbooi32/Iu69j1/WZZ+bYUPGZFeJmZp3jkktg0oDViSdNSvEOUFgSkfQySXuWHpOWQf05sJSda0rPZ+faA0uB0/MoraOBZ3Kz1y3AcZKm5g7144Bb8rYtko7Oo7JOx+sYmFknGrgkRwct0VHkBIz7At/Mo24nAv8WEd+TdCdwg6QzgdXA2/P+NwMnktat3gqcARARmyR9Argz73dRRGzKjxeS1qjeA/huvpmZdY4LLoAXX9w19uKLKd7X15oyjcC4W5Sqt7c3PIuvmbWNCRMq1zwk2LGj+eWpQtKKsks1XuIr1s3MWskd62ZmVrdLLoEpU3aNTZnijnUzs6bq1KlD+vpg8WLo7k5NWN3d6XkH9IeAk4iZjQUdPnUIfX2walXqA1m1qrEJpODk6iRiZp2vw6cOKUwTkquTiJl1vg6fOqQwTUiuTiJm1vk6fIRTYZqQXJ1EzKzzdfgIp8I0Ibk6iZhZ5+vwEU6FaUJyLXLaEzOz5unrc9IYqPR5XHBBasKaNSslkAZ+Tk4iZmZjWcHJ1c1ZZmZWNycRMzOrm5OImdkYFZHGGZRu27c3/jWcRMzMxphf/SoljQkDvuG7uhr/Wk4iZmat1qD5rS68MCWPgw7aNf75zxe3WGLho7MkdQH9wLqIeJukLwN/CDyTd3lnRNyTl7j9PGl1w605flc+x3zg7/P+F0fE1Tl+BDtXNrwZODfG2ypbZtbZSvNblaYnKc1vBTWPqkoLyA62bh387u82oIxDaEZN5FzgoQGxv42IOfl2T46dAMzOtwXAFQCS9gEuBI4CjgQuzGutk/d5d9lxcwt8H2ZmjTeK+a1KfR0DRaRb0QkECk4ikmYCfwL8aw27zwOuieQ2YG9J+wHHA8siYlNEPA0sA+bmbXtFxG259nENcFIhb8TMrCgjnN9qx47hk0czFV0T+Rzwd8DAhYIvkXSfpMskTc6x/YE1ZfuszbGh4msrxM3MOkeN81s98EBKHAM7x2fMaE3yKCksiUh6G7AhIlYM2PRh4DXA64F9gA8VVYaysiyQ1C+pf+PGjUW/nJlZ7YaZ3+q881LyOOywXXe58sqUODZsGOb8BS9KVWTH+huBP5N0IrA7sJek6yLitLz9eUlfAj6Yn68DDig7fmaOrQOOGRD/UY7PrLD/IBGxGFgM0Nvb6453M2sfVea30ml9cNrg3TduhOnTazx3Azrth6NmDGaSdAzwwTw6a7+IWJ9HY10G/DYizpf0J8A5pNFZRwGXR8SRuWN9BXB4Pt1dwBERsUnSHcBfA7eTRmf9U0TcPFRZent7o7+/v4B3aWY2etVGWtX1Vd3TkxLHQN3daRneEZC0IiJ6B8ZbMQHjEkkzAAH3AO/N8ZtJCWQlaYjvGQA5WXwCuDPvd1FEbMqPF7JziO93883MrKO88AJMnlx526h+5zdhUaqm1ETaiWsiZtYuvvUt+PM/Hxw/+GD4xS8a8AJNqIn4inUzsyabOjU1Ww1MIJdckmoeDUkgpRN6USozs7GhWn/H+vXwylcW8IJNWJTKNREza56Ch5u2q+EuDiwkgZT09aWmqx070n2DF6hyTcTMmqMJw03byX/+5+CWpJKx1BXtmoiZNcco5ojqJNdem2odlRJIK68sL4qTiJk1R6VRQkPFO0ypyer003eNf/rTYzN5lLg5y8yao6ur8tJ6RayU1ETVOss3bUqjsMY6JxEza45qa7MWsWZrEzT0yvIO5uYsM2uO7u6RxdvQli3tNQ17O3ASMbPmaMKFb0U59tiUOF7xisHbxmvyKHESMbPm6OuDxYtTzUNK94sXt/Xw3lKtY/nyXeNf/KKTR4n7RMzMBqjW37FhQ1oEynZyEjGz5uiAiw3dWT5ybs4ys+Zo04sNV650Z/louCZiZs3RhLUtRmL27JRAKnHiqJ1rImbWHLNmjSxekFKtY2ACWbDANY96OImYWXO0eIhvtSarLVtS4vjCF5pSjDGn8CQiqUvS3ZK+k58fKOl2SSslfVXSpByfnJ+vzNt7ys7x4Rz/paTjy+Jzc2ylpPOLfi9mNgotGuI7XH/HnnsW+vJjXjNqIucCD5U9vxS4LCIOAp4GzszxM4Gnc/yyvB+SDgFOAQ4F5gKLcmLqAv4ZOAE4BDg172tm9Vq4ECZOTN+6Eyem541U8NoWJXfd5c7yZik0iUiaCfwJ8K/5uYBjgRvzLlcDJ+XH8/Jz8va35P3nAddHxPMR8QiwEjgy31ZGxK8j4gXg+ryv2dhW1MJOCxfCFVfsnMtq+/b0vNGJpEClxHHEEYO3OXkUo+iayOeAvwN25OfTgM0RsS0/Xwvsnx/vD6wByNufyfu/FB9wTLX4IJIWSOqX1L9x48ZRviWzFipda7F6dfpGLF1r0YhEsnjxyOJtpFqt46MfdfIoWmFJRNLbgA0RsaKo16hVRCyOiN6I6J3hy02tkxV5rUUHzrJbLXn89rcpcVx0UfPLNN4UWRN5I/BnklaRmpqOBT4P7C2pdH3KTGBdfrwOOAAgb38F8FR5fMAx1eJmY1eRCztVW9ejDdf7GK6/Y/LkBr/gOF0bvhaFJZGI+HBEzIyIHlLH+A8jog9YDpycd5sP3JQfL83Pydt/GBGR46fk0VsHArOBO4A7gdl5tNek/BpLi3o/Zm2hyC/60hQktcab7Otfb1FneZFNiGNAK64T+RDwAUkrSX0eV+b4lcC0HP8AcD5ARDwA3AA8CHwPODsitud+k3OAW0ijv27I+5qNXUU2OS1aBGedtTMhdXWl54sWjf7cJXX8oi8ljpNPHrytKf0dzZiupYNrOopx1uPU29sb/f39rS6GWX2mT4ennhocnzYNnnyy+eUZiYETMEK62LDKtSLVJkM87zy47LJiiljRhAmVM5WUhiqP1gg/l1aRtCIiegfFnUTMOkgnJ5Gensp9N93d6ZqRrFryePHFdOlK09VY7rY9f4NUSyKe9sSsk2zaNLJ4OxliAsaI4fs7WpJAoPjpWtpsYsqRchIx6yRFT2JYZNt8hTIu4iwUO5hQ4Zuoba7vKHq6ljaZmLJeTiJmnaTIX8VFj0IqK7sIRHA2gzvt2yZ5lCtyupYOXnsenETMOkuRv4qLHoXU14e2/gYxOEN86lNtmjyaoQPXni/njnUzSwochVSts3zHjurbrL24Y93MhtbgtvlSghiqs9wJpPM5iZhZ0qC2+Q99KCWHShfRj9smqzHMa6ybWVJqg7/ggjS8dNaslEBqbJsfqlbhxDF2uSZiZjvVMQqpWpPVlVdWqHl08PQeVplrImZWl2o1j6q1joHTe5SGEEPHjESywVwTMbOaPf/8KGbSbcZEhtZ0TiJmNqy/+quUOHbfffC2mjvLi1wLxVrGScSs0cZQu3+p1vGVrwzeNuKRVh206JXVzknErJHGyAJG1Zqsvv3tUQzT7cDld214TiJmjdTh7f7D9Xe87W2jOHl398ji1hGcRMwaqQOn9d68uUnLznb4RINWWWFJRNLuku6QdK+kByR9PMe/LOkRSffk25wcl6TLJa2UdJ+kw8vONV/Sw/k2vyx+hKT78zGXS55EwVqsg6b1PvjglDimTh28rZAryzt8okGrrMjrRJ4Hjo2I5yTtBvxM0nfztr+NiBsH7H8CMDvfjgKuAI6StA9wIdALBLBC0tKIeDrv827gduBmYC7wXcxa5ZJLKi912ka/tlt6ZXlfn5PGGFNYTSSS5/LT3fJtqP+i84Br8nG3AXtL2g84HlgWEZty4lgGzM3b9oqI2yJNRXwNcFJR78fGmKJGUPX1wfz5O0ccdXWl523wxVmtyWr5cs9pZfUrtE9EUpeke4ANpERwe950SW6yukzS5BzbH1hTdvjaHBsqvrZCvFI5Fkjql9S/cePG0b4t63RFjqBasgSuvnrniKPt29PzFo7OGq6/45hjml4kG0MKTSIRsT0i5gAzgSMlHQZ8GHgN8HpgH+BDRZYhl2NxRPRGRO+MGTOKfjlrd0WOoGqT0VmPPdakznIb95oyOisiNgPLgbkRsT43WT0PfAk4Mu+2Djig7LCZOTZUfGaFuNnQihxB1eLRWaXEsX+FOrmThxWhyNFZMyTtnR/vAbwV+EXuyyCPpDoJ+Hk+ZClweh6ldTTwTESsB24BjpM0VdJU4Djglrxti6Sj87lOB24q6v3YGFLkCKoWjc6qVusAJ4+O0MGzHBRZE9kPWC7pPuBOUp/Id4Alku4H7gemAxfn/W8Gfg2sBL4ILASIiE3AJ/I57gQuyjHyPv+aj/kVHplltSjyeoUmXwtRLXncd5+TR8coepaDohNURIyr2xFHHBFmcdZZEV1d6Xu2qys9b5Trrovo7o6Q0v111zXu3NnOFLHrbdSK/Fyssu7uyv+Y3d2jP/d110VMmbLreadMqev/JNAfFb5TFePsp0pvb2/09/e3uhjWSkuWwBlnwIsv7ozttht86UttMRS3mvvug9e+tvK2hvwZL1wIV1wxOH7WWbBoUQNewCqaMKHyP6CUFgcbjZ6eyrMkd3enRcdGQNKKiOgdFHcSsXFn+nR46qnB8WnT4Mknm1+eYTTt4sCJEytPhtjVBdu2NfCFbBcN/KIfpIEJqloS8dxZNv5USiBDxVuk6Z3lnmW3NYrsR2vCQA8nEbM2Uy15rFxZcGe51/tojSJnOWjCQI8hk4ikDwx1a1gpzJpp2rSRxUeqztEww10c+KpXNaZ4VZXWO681bo1R5CwHTZj0criayJ751gucxc7pRt4LHD7EcWbt6/Ofh0mTdo1NmpTiozXC4Zo//nEbXVm+aFHqRC//RexO9eIVPctBX1/qW9mxI903ePBITR3rkn4C/ElEPJuf7wn8e0T8QUNL0wTuWDcgfalfcEG6knzWrFS9b8QfV42dpC2dSdfaS5GjsxqoWsd6rVPB7wu8UPb8hRwz60xFTUk+zLQnTh42yKxZlX94tOEaNJXU2rF+DXCHpI9J+hhp/Y6rCyuVWaeq8oev2FExgWzY4CvLx70OX/GxpiQSEZcA7wKezrczIuIfiiyYWUc68cRdnopAFZbRKSUOTyptnb7iY80XG0rqIjVhvdQEFhHtu3B0Fe4TsUL19LBs9WyOY1nFza5xWKcaVZ+IpPeRlqh9AtgOiLRK4X9tZCHNOllqrlpVcVtoQlt1kpo1Sq0d6+cCB0dEe13Sa9YGqnWWn8zX+BpvT09mdTevQGZNVGvH+hrgmSILYtZUDZgeu9r1HVv3mEagnQmkgzpJzUaq1prIr4EfSfp34PlSMCI+W0ipzIpUuiCwdIFX6YJAqKkzc6j5rNL5Ly/mGhSzNlTrxYYXVopHxMcbXqKCuWPd6pk19frr4dRTK5/OneU2HoxqFt+I+HhOGJ8qPR4ugUjaXdIdku6V9ICkj+f4gZJul7RS0lclTcrxyfn5yry9p+xcH87xX0o6viw+N8dWSjq/to/COkZRK7KNYB30UpNVpQTi6zvMakwikt4g6UHgF/n5ayUNN6HO88CxEfFaYA4wN6+dfilwWUQcRLrm5My8/5nA0zl+Wd4PSYcApwCHAnOBRZK68pDjfwZOAA4BTs372lhQ5JKhNUyPXa2/49xznTzMytXasf454HjgKYCIuBcYct6svKLic/npbvkWwLHAjTl+NXBSfjyPnVfB3wi8RZJy/PqIeD4iHiGtp35kvq2MiF9HxAvA9XlfGwuKnJRuiCuEqyWPF19MieNznxv9y5uNJTWvJxIRawaEhl2pJtcY7gE2AMuAXwGbI6K0TNpa0qzA5Ps1+bW2kUaDTSuPDzimWtzGgkp9FkPFR2LAFcIxqxtt/Q06bXDnd6nWMbHWIShm40zNQ3wl/TcgJO0m6YPAQ8MdFBHbI2IOMJNUc3hN3SUdBUkLJPVL6t+4cWMrimAjVW0I1FAzGI5EXx+fO28Vih1MeHTVoM1usjKrTa2/r94LfJ70S/8x4Bbg7FpfJCI2S1oOvAHYW9LEXNuYCazLu60DDgDWSpoIvILUfFaKl5QfUy0+8PUXA4shjc6qtdzWQtW+wRvwze6ZdM0ap9bRWU9GRF9E7BsRMyLitOGuXpc0Q9Le+fEewFtJtZflwMl5t/nATfnx0vycvP2HkcYfLwVOyaO3DgRmA3cAdwKz82ivSaTO96U1vWsbl6r1d/zj3v9AXLfECcSsDrXOnfV7pJrI0aTO8f8HvD8ifj3EYfsBV+dRVBOAGyLiO3mU1/WSLgbuBq7M+18JXCtpJbCJlBSIiAck3QA8CGwDzo6I7blc55BqRV3AVRHxQO1v3dratGnwVIXfKXUsYVut5rEDIYDNwILc0e6LAs1GpNaLDW8jDaf9Sg6dArwvIo4qsGyF8MWGHWLJEnjXu+CFsrXQJk2Cq66q6Yt+x46dq7wOFN09I77Y0Gy8G9XFhsCUiLg2Irbl23XA7o0tolmZvr6UMMrXWKghgXzyk2n3Sgnkpc7yEVxsaGZDq7Vj/bv5ivDrSc1ZfwncLGkfgIjYVFD5bDwbwRK2I+os7/DlSM3aSa01kbcD7wF+SOoYP4vUpLUCcNuQtUy1zvIbbxximG6HL0dq1k6GrIlIej2wJiIOzM/nA39BWnnnY66BWKsMO5PuUEq1G8+0azZqw9VEvgC8ACDpD4D/RZqa5BnydRdmzfLCC9VrHiO+OLCvL3Wi79iR7p1AzOoyXBLpKqtt/CWwOCK+HhEfBQ4qtmhmybnnpsQxefLgbb6y3Ky1hutY7yq7uvwtwIIRHGs2Kr6y3Kz9DVcT+QrwY0k3Af8J/BRA0kF4uVwrSLUmq+XLXfMwazdD1iYi4hJJt5KuPv9+7LwycQLwvqILZ+PLqDrLzawlhm2SiojbKsT+o5ji2Hjz3HOw556Vtzl5mLW/mtcTMRtk4cK00IaU7hcurPnQd7wjHVYpgbjJyqxzuHPc6rNwIVxxxc7n27fvfL6o+srJ7iw3G1tcE7H6LK5ymVCVeLXO8nvvdc3DrJO5JmL12V5ldeQBcXeWm41trolYfarNs97VxZNPNujK8iVLoKcHJkxI90uW1FlYMyuKk4jVZ8GCQaG38AO0fRszZgzefcRNVkuWpNdYvToduHp1eu5EYtZWnESsPosWwVlnQVcXIhDBD3nLLrvMnDmK/o4LLoCtW3eNbd2a4mbWNgpLIpIOkLRc0oOSHpB0bo5/TNI6Sffk24llx3xY0kpJv5R0fFl8bo6tzOualOIHSro9x7+a11q3JtEVi9D2bYPijzySEseaNaM4uReOMusIRdZEtgF/ExGHkNZmP1vSIXnbZRExJ99uBsjbTgEOBeYCiyR15TXa/xk4ATgEOLXsPJfmcx0EPA2cWeD7sWy4/o6enga8SLUForxwlFlbKSyJRMT6iLgrP34WeAjYf4hD5gHXR8TzEfEIsBI4Mt9WRsSvI+IF0uqK8yQJOBa4MR9/NXBSIW/GWLeugdOw18ILR5l1hKb0iUjqAV4H3J5D50i6T9JVkqbm2P5AeQPI2hyrFp8GbM4zDJfHK73+Akn9kvo3btzYiLc0bhx/fEocM2cO3lbo9R19fTB//s5RYF1d6bnX/TBrK4UnEUkvB74OnBcRW4ArgFcBc4D1wGeKLkNELI6I3ojonVFp6JANUqp1fP/7u8ZPO61JFwcuWQJXX73zupPt29Nzj84yayuFJhFJu5ESyJKI+AZARDwREdsjYgfwRVJzFcA64ICyw2fmWLX4U8DekiYOiNsoVGuyevLJlDiuvbZJBfHoLLOOUOToLAFXAg9FxGfL4vuV7fbnwM/z46XAKZImSzoQmA3cAdwJzM4jsSaROt+X5mnplwMn5+PnAzcV9X7GuuH6O6ZNa3KBPDrLrCMUOe3JG4F3APdLuifHPkIaXTUHCGAV8B6AiHhA0g3Ag6SRXWdHxHYASecAtwBdwFUR8UA+34eA6yVdDNxNSlpWo5UrYfbsyttaPi3JrFnpAsNKcTNrG4qWf1s0V29vb/T397e6GC116KHw4IOVt7XNf4fSFevlTVpTpqQJHt25btZ0klZERO/AuK9YH0dKTVYDE8gHPtCGM+n29aWE0d2dCt3d7QRi1oY8i+84UG0m3eeeg5e9rLllGZG+PicNszbnJDKGeRp2Myuam7PGmEcfHWKkVXcPcV0Dr7PwVO1m456TyBjx13+9s+ug3AFak+fYVWOnU/dU7WaGR2d1vGpNVt/7Hhz/np7Kw2S7u2HVqtG9cE+B5zaztlNtdJb7RDpUteTx4oswsfSvWuQFe74Y0Mxwc1bHGe7K8onlPwuKnE59n31GFjezMclJpAM8/HCd07B7OnUzK5iTSBs7/fSUOF796l3jvb01XhxY5HTqmzaNLG5mY5KTSBsq1ToGzpj705+mxHHnnTWeqMjp1L3yoJnhJNJWqjVZbd+ekseb3jTCExY5nbqbyswMJ5GWixi+v2NCvf9KRY6g8txWZoaH+LbM5s0wdWrlbQ27dKfo6dQ9t5XZuOeaSJP97Gfph/vABPKTnxQwk66bnMysYE4iTfKRj6Tk8eY37xp/+umUOAbGG8JNTmZWMDdnFWzatMqjXps224ybnMysQEWusX6ApOWSHpT0gKRzc3wfScskPZzvp+a4JF0uaaWk+yQdXnau+Xn/hyXNL4sfIen+fMzleV33livvLC9PIN3dLVj8yTPtmlmBimzO2gb8TUQcAhwNnC3pEOB84NaImA3cmp8DnADMzrcFwBWQkg5wIXAUcCRwYSnx5H3eXXbc3ALfz7CeeioljoGjqT7xiZQ4mj4voWfaNbOCFZZEImJ9RNyVHz8LPATsD8wDrs67XQ2clB/PA66J5DZgb0n7AccDyyJiU0Q8DSwD5uZte0XEbZGmIr6m7FxNdeutKXlMn75r/Pbb03f33/99K0pFsdeJmJnRpI51ST3A64DbgX0jYn3e9Diwb368P7Cm7LC1OTZUfG2FeKXXXyCpX1L/xo0bR/dmypx7bkoef/zHu8affTYljyOPbNhL1ccz7ZpZwQrvWJf0cuDrwHkRsaW82yIiQlLhPQQRsRhYDGk9kdGeb7fdYNu2Sq8z2jM3WNHXiZjZuFdoTUTSbqQEsiQivpHDT+SmKPL9hhxfBxxQdvjMHBsqPrNCvBDlneXlCeSww0bZWV5kx7evEzGzghU5OkvAlcBDEfHZsk1LgdIIq/nATWXx0/MoraOBZ3Kz1y3AcZKm5g7144Bb8rYtko7Or3V62bkabmBn+Wc+kxLH/feP4qRFd3z7OhEzK1hhy+NKehPwU+B+YEcOf4TUL3IDMAtYDbw9IjblRPC/SSOstgJnRER/Pte78rEAl0TEl3K8F/gysAfwXeB9Mcwbqnd53FIr3N13w5w5Iz68Mi8xa2YdotryuF5jvZUmTKjcDibBjh2D42ZmLVItiXjak1ZqxhKzvtjQzArkaU/GslKfS+lakVKfC7hfxMwawjWRVip6iVlfbGhmBXMSaaWil5j1xYZmVjAnkVYq+joOr4NuZgVzEmmloq/j8MWGZlYwd6y3WpHrfZTOe8EFqQlr1qyUQNypbmYN4iQy1nlRKjMrkJuzzMysbk4iZmZWNycRMzOrm5OImZnVzUnEzMzq5iRiZmZ1cxIxM7O6OYmYmVndnETMzKxuRa6xfpWkDZJ+Xhb7mKR1ku7JtxPLtn1Y0kpJv5R0fFl8bo6tlHR+WfxASbfn+FclTSrqvZiZWWVF1kS+TFovfaDLImJOvt0MIOkQ4BTg0HzMIkldkrqAfwZOAA4BTs37Alyaz3UQ8DRwZoHvxczMKigsiUTET4BaV1eaB1wfEc9HxCPASuDIfFsZEb+OiBeA64F5kgQcC9yYj78aOKmR5Tczs+G1ok/kHEn35eauqTm2P7CmbJ+1OVYtPg3YHBHbBsQrkrRAUr+k/o0bNzbqfZiZjXvNTiJXAK8C5gDrgc8040UjYnFE9EZE74wZM5rxkrVbsgR6emDChHS/ZEmrS2RmVrOmTgUfEU+UHkv6IvCd/HQdcEDZrjNzjCrxp4C9JU3MtZHy/TvHkiWwYMHOddBXr07PwdO3m1lHaGpNRNJ+ZU//HCiN3FoKnCJpsqQDgdnAHcCdwOw8EmsSqfN9aUQEsBw4OR8/H7ipGe+hoS64YGcCKdm6NcXNzDpAYTURSV8BjgGmS1oLXAgcI2kOEMAq4D0AEfGApBuAB4FtwNkRsT2f5xzgFqALuCoiHsgv8SHgekkXA3cDVxb1Xgrz6KMji5uZtRmlH/XjR29vb/T397e6GElPT2rCGqi7G1atanZpzMyqkrQiInoHxn3FeitdcglMmbJrbMqUFDcz6wBOIq3U1weLF6eah5TuFy92p7qZdYymjs6yCvr6nDTMrGO5JmJmZnVzEjEzs7o5iZiZWd2cRMzMrG5OImZmVjcnETMzq5uTSC08066ZWUW+TmQ4nmnXzKwq10SG45l2zcyqchIZjmfaNTOryklkOLNmjSxuZjaOOIkMxzPtmplV5SQyHM+0a2ZWVWFJRNJVkjZI+nlZbB9JyyQ9nO+n5rgkXS5ppaT7JB1edsz8vP/DkuaXxY+QdH8+5nJJKuq90NeXFonasSPdO4GYmQHF1kS+DMwdEDsfuDUiZgO35ucAJ5DWVZ8NLACugJR0SMvqHgUcCVxYSjx5n3eXHTfwtczMrGCFJZGI+AmwaUB4HnB1fnw1cFJZ/JpIbgP2lrQfcDywLCI2RcTTwDJgbt62V0TcFml932vKzmVmZk3S7D6RfSNifX78OLBvfrw/sKZsv7U5NlR8bYV4RZIWSOqX1L9x48bRvQMzM3tJyzrWcw0imvRaiyOiNyJ6Z8yY0YyXNDMbF5qdRJ7ITVHk+w05vg44oGy/mTk2VHxmhbiZmTVRs+fOWgrMBz6Z728qi58j6XpSJ/ozEbFe0i3AP5R1ph8HfDgiNknaIulo4HbgdOCfainAihUrnpS0unFvqWGmA0+2uhB1ctlbw2Vvvk4tN4y+7N2VgoUlEUlfAY4BpktaSxpl9UngBklnAquBt+fdbwZOBFYCW4EzAHKy+ARwZ97voogoddYvJI0A2wP4br4NKyLasj1LUn9E9La6HPVw2VvDZW++Ti03FFf2wpJIRJxaZdNbKuwbwNlVznMVcFWFeD9w2GjKaGZmo+Mr1s3MrG5OIu1jcasLMAoue2u47M3XqeWGgsqu1JJkZmY2cq6JmJlZ3ZxEzMysbk4iLVBlhuM5km6TdE+eouXIVpaxGkkHSFou6UFJD0g6N8crztDcLoYo96ck/SLPHv1NSXu3uKiDVCt72fa/kRSSpreqjNUMVXZJ78uf/QOS/rGV5axkiP8zbf+3Kml3SXdIujeX/eM5fqCk2/Ps51+VNGnULxYRvjX5BvwBcDjw87LY94ET8uMTgR+1upxVyr4fcHh+vCfwH8AhwD8C5+f4+cClrS5rjeU+DpiY45e2W7mHKnt+fgBwC+m6q+mtLusIPvc/An4ATM7bfqfVZR1B2dv+bxUQ8PL8eDfSRdlHAzcAp+T4vwBnjfa1XBNpgag8w3EAe+XHrwAea2qhahQR6yPirvz4WeAh0uSX1WZobgvVyh0R34+IbXm329h1Op22MMRnDnAZ8Hc0aR66kRqi7GcBn4yI5/O2DdXP0hpDlL3t/1YjeS4/3S3fAjgWuDHHG/J36iTSPs4DPiVpDfBp4MOtLc7wJPUAryP9yqk2Q3PbGVDucu+ixpkPWqW87JLmAesi4t7Wlqo2Az73VwNvzk0rP5b0+pYWbhgDyn4eHfC3KqlL0j2kOQqXAb8CNpf9aBpy9vNaOYm0j7OA90fEAcD7gStbXJ4hSXo58HXgvIjYUr4tUl25LX8ZVyu3pAuAbcCSVpVtOOVlJ5X1I8D/bGWZalXhc58I7ENqYvlb0nRIxa1OOgoVyt4Rf6sRsT0i5pBq10cCrynidZxE2sd84Bv58ddI/+htSdJupD+qJRFRKnO1GZrbRpVyI+mdwNuAvpwA206Fsr8KOBC4V9Iq0hfFXZJe2bpSVlblc18LfCM3u9wB7CBNENhWqpS9Y/5WASJiM7AceANpwb/SdFcNmf3cSaR9PAb8YX58LPBwC8tSVf61eCXwUER8tmxTaYZm2HWG5rZQrdyS5pL6FP4sIra2qnxDqVT2iLg/In4nInoioof0pXx4RDzewqIOMsT/l2+ROteR9GpgEm02O+4QZW/7v1VJM0ojDSXtAbyV1KezHDg579aQv1Nfsd4C5TMcA0+QZjj+JfB5UjX/t8DCiFjRqjJWI+lNwE+B+0m/HiE1q9xOGvkxizxDc+yccbnlhij35cBk4Kkcuy0i3tv8ElZXrewRcXPZPquA3ohoty/iap/7D0gTq84BXgA+GBE/bEUZqxmi7Fto879VSf+V1HHeRaos3BARF0n6PeB6UlPi3cBppcENdb+Wk4iZmdXLzVlmZlY3JxEzM6ubk4iZmdXNScTMzOrmJGJmZnVzEjFrEkkn5dl2C7ly2KwVnETMmudU4Gf53mxMcBIxa4I8/9KbgDOBU3JsgqRFeU2NZZJulnRy3nZEnphwhaRbSlPKmLUbJxGz5pgHfC8i/gN4StIRwP8H9JDWqHgHaW6j0nxN/wScHBFHkK7svqQVhTYbzsThdzGzBjiVNFUGpGknTiX9/X0tInYAj0tanrcfDBwGLMsT23YB6zFrQ04iZgWTtA9por7/IilISSGAb1Y7BHggIt7QpCKa1c3NWWbFOxm4NiK686y7BwCPkFa3/IvcN7IvaVJOSJNxzpD0UvOWpENbUXCz4TiJmBXvVAbXOr4OvJI0hfuDwHXAXcAzEfECKfFcKule4B7gvzWttGYj4Fl8zVpI0ssj4jlJ04A7gDe225ogZkNxn4hZa30nLx40CfiEE4h1GtdEzMysbu4TMTOzujmJmJlZ3ZxEzMysbk4iZmZWNycRMzOr2/8PUdnz4mlTzIYAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Plot for the Testing set\n", "plt.scatter(X_test, y_test, color='red') # Plotting the observation \n", "plt.plot(X_train, regressor.predict(X_train), color='blue') # Plotting the regression line\n", "plt.title('Age vs. spend (Testing sett)')\n", "plt.xlabel('Age') \n", "plt.ylabel('Spend') \n", "plt.savefig(\"./image/spend_5.jpg\")\n", "plt.show() " ] }, { "cell_type": "code", "execution_count": null, "id": "95902b9d-ebfe-4726-9a1e-87ab258aa80a", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.2" } }, "nbformat": 4, "nbformat_minor": 5 }