
Distributed Systems

Agenda

Distributed Systems
Asynchronous/Synchronous -
Communication

MVC
Design Patterns

Ray

Pyro

Distributed Systems

Distributed systems vs. Distributed computing

Distributed system

A set of computers which are independent and connected with an interconnection
network. Components are running on different machines that communicate via
messages and work together towards a single end.

Distributed computing

A method of computer processing in which different parts of a computer program are
run on two or more computers that are communicating with each other over a network.
Allows for better performance due to its simple scalability and builtin concurrency.
It also allows for flexible and resilient application that doesn’t have a single point of
failure.

Services of distributed systems
Services of distributed systems
Mail Services
Games and Multimedia
Remote logging
File transferring and sharing

The simplest, and most relatable, example of a distributed system would be

The Internet!
Same concept can be applied to a plethora of problems - machine learning, real time
streaming - anywhere there is a need for large-scale compute then distributed systems
are a must.

Pros of distributed systems

Fault tolerance - The system’s tasks are distributed across multiple machines, that
means that in the event of a machine failure, another agent is available for the
system to delegate the work to instead. This prevents a single source of failure.

Scalability - Distributed systems follow best practices for scaling in that they are
focused on horizontally scaling loads rather than vertically. This means that as the
load increases, you simply add more machines to your system to do the work
rather than increasing the memory and CPU of the old machines to handle the
larger input.
Efficiency - Since the system can be more performant than a non-distributed
system, you have the flexibility to use fewer resources to get the same task done,
even removing machines reactively to the input. This allows for a better cost fitting
to usage in the cloud.

Cons of distributed systems

Messaging - Since there are different machines processing at the same time, there
is a large risk of overhead necessary to synchronize them and keep all the
applications running appropriately and the data consistent across the network.
Reliability - Fault tolerance ia a benefit of distributed systems, but the network
management is often a behemoth task that is tuned particularly to your application
and thus can be sensitive to changes or outages in the network.

Maintenance - Running an application where the number of machines scales
requires new architectural and managerial considerations. Traffic needs to be
directed correctly to machines via a load balancer of some kind and every machine
needs its own application and infrastructure monitoring, logging, delivery, and
testing.

Asynchronous
Synchronous
Communication

Asynchronous communication
Sender is not blocked, the process may, after sending the
message, continue immediately

Answers are optional

The sender receives on occasion the result asynchronously

The sender gets active on occasion

Implementation uses in general queues

Features

It is more complicated to implement, but more efficient
Loose coupling of processes

Lower error dependency

Receiver does not need to be available to receive

Synchronous communication
Transmitter and receiver block when executing the Send or
Receive operation

Features

Tight coupling between the transmitter and receiver with
all its advantages and disadvantages

High dependence especially in case of failure

Prerequisite

Secure and fast network connections are available
Receiving process is available

False assumptions

False assumptions
Developers making programs sometimes make the mistake to assume things.
When this happens, the program run into problems, and this can have some
problematic consequences.

The network is reliable

The network is secure
The network is homogeneous

The topology does not change

Latency is zero

Bandwidth is infinite
Transport cost is zero

There is one administrator

Discuss
What happens when the assumption is not true?

Make a list of examples, to show you understand
when it is not true

Make a list of consequences, what’s the result in
those situations

Design Patterns
Well-known solutions to well-known problems - And that is called Design Patterns

Design Patterns
In software engineering, a design pattern is a
general repeatable solution to a commonly
occurring problem in software design.

A design pattern isn't a finished design that
can be transformed directly into code.

It is a description or template for how to solve
a problem that can be used in many different
situations.

https://sourcemaking.com/design_patterns

https://sourcemaking.com/design_patterns

Gang Of Four Design Patterns
Elements of Reusable Object-Oriented Software(1994) written by Erich Gamma,
Richard Helm, Ralph Johnson, and John Vlissides is a book on software engineering
highlighting the capabilities and pitfalls of object-oriented programming.

They have listed 23 classic software design patterns which are influential even in the
current software development environment.

The authors are often referred to as the Gang of Four.

Benefits of the design pattern
Design patterns can speed up the development process by providing tested,
proven development paradigms.

Reusing the design patterns helps to prevent subtle issues that can cause major
problems and it also improves code readability
Design pattern provides general solutions, documented in a format that doesn’t
specifics tied to a particular problem

In addition to that patterns allows developers to communicate well-known, well-
understood names for software interactions,

Common design patterns can be improved over time, making them more robust
than ad-hoc design

A standard solution to a common programming problem enables large scale reuse
of software

Types of Design Patterns
The 23 design patterns have been categorized into 3 verticals:

1. Creational - Deal with object creation mechanisms, trying to create objects in a
manner suitable to the situation.

2. Structural - Deal with easing the design by identifying a simple way to realize
relationships among entities.

3. Behavioural - Deal with

Types of
Design
Patterns

Creational

Structural

Behavioural

Uses of Design Patterns
Design patterns can speed up the development process by providing tested, proven
development paradigms.

Effective software design requires considering issues that may not become visible until
later in the implementation.

Reusing design patterns helps to prevent subtle issues that can cause major problems
and improves code readability for coders and architects familiar with the patterns.

https://sourcemaking.com/design_patterns

https://sourcemaking.com/design_patterns

MVC
Model-View-Controller

MVC
Model–View–Controller is a software
design pattern commonly used for
developing user interfaces that
divides the related program logic into
three interconnected elements.

Python - HTML - MVC
When building a web app, you define what are known as routes.

Routes are, essentially, URL patterns associated with different pages. So when someone
enters a URL, behind the scenes, the application tries to match that URL to one of these
predefined routes.

There are four major components in play:

Routes

Models
Views

Controllers

Python - HTML - MVC

Routes
Each route is associated with a controller - more specifically, a certain function within a
controller, known as a controller action.

So when you enter a URL, the application attempts to find a matching route, and, if it’s
successful, it calls that route’s associated controller action.

Python - Flask example

@app.route('/')
def main_page():
 pass

Here we establish the / route associated with the main_page() view function.

Python - HTML - MVC

Models and Controllers
Within the controller action, two main things typically occur:

The models are used to retrieve all of the necessary data from a database

Data is passed to a view, which renders the requested page

The data retrieved via the models is generally added to a data structure (like a list or
dictionary), and that structure is what’s sent to the view.

Python - HTML - MVC

Python - Flask example

@app.route('/')
def main_page():
 """Searches the database for entries, then displays them."""
 db = get_db()
 cur = db.execute('select * from entries order by id desc')
 entries = cur.fetchall()
 return render_template('index.html', entries=entries)

Now within the view function, we grab data from the database and perform some
basic logic.

This returns a list, which we assign to the variable entries, that is accessible within the
index.html template.

Python - HTML - MVC

Views
In the view, that structure of data is accessed and the information contained within is
used to render the HTML content of the page the user ultimately sees in their browser.

Again, back to our Flask app, we can loop through the entries, displaying each one
using the Jinja syntax:

HTML

{% for entry in entries %}

 <h2>{{ entry.title }}</h2>
 <div>{{ entry.text|safe }}</div>

{% else %}
No entries yet. Add some!
{% endfor %}

https://jinja.palletsprojects.com/en/2.11.x/

MVC Summary
MVC request process is as follows

A user requests to view a page by entering a URL

The application matches the URL to a predefined route

The controller action associated with the route is called
The controller action uses the models to retrieve all of the necessary data from a
database, places the data in an array, and loads a view, passing along the data
structure

The view accesses the structure of data and uses it to render the requested page,
which is then presented to the user in their browser

Discuss how to understand the MVC pattern
Explain in your own words

What does each part do?

Think of the programs you have created in Python – what
would you have to do to change it into MVC style?

Command Patten
The command pattern is handy in situations when, for some reason, we need to start by
preparing what will be executed and then to execute it when needed.

The advantage is that encapsulating actions in such a way enables Python developers
to add additional functionalities related to the executed actions, such as undo/redo, or
keeping a history of actions and the like.

Code

file:///C:/Users/tuehe/OneDrive/Dokumenter/GitHub/keaonline/4_semester/distribuerede_systemer/slide/CommandPatten.md

Select one Design Pattern to understand together

You can use - https://sourcemaking.com/design_patterns - as a
starting point.

Understand and debate in the group
This is not an easy assignment. - Don’t panic if you can not
understand all details. Try to grab the main idea and then use your
common sense.

https://sourcemaking.com/design_patterns

Ray
Ray is an open source project that makes it simple to scale any compute-intensive
Python workload — from deep learning to production model serving

Pyro
Pyro is a library that enables you to build applications in which objects can talk to each
other over the network, with minimal programming effort.

