
© Kong Inc. Making the Move from Monolithic Architectures to Microservices1

Making the Move from 
Monolithic Architectures 
to Microservices

KongHQ.com

ebook



© Kong Inc. Making the Move from Monolithic Architectures to Microservices2

Table of contents

04
03 14

05
15

06
08

Should you blow up your 
monolith?

Introduction Containers and service mesh

Considerations when 
adopting microservices

Conclusion

Two ways for microservice 
communication
       Communications scenarios

A technical look into the 
transition
       Boundaries

       Testing 

       Transition strategies 

              Ice cream scoop strategy

              LEGO strategy

              Nuclear option strategy

        The database

        Routing and versioning 

        Libraries and security

We’ll highlight the pros and cons, as well as common mistakes to avoid. This will include 
incentives, considerations, strategies for transitioning to microservices, and best practices for 
the process.

In this eBook, we’ll discuss how to move from a monolithic 
application architecture to a microservices-based architecture.



© Kong Inc. Making the Move from Monolithic Architectures to Microservices3

Decoupling the monolithic application is much 
like taking a single cumbersome structure, 
breaking it down, and rebuilding it with LEGO 
pieces. It can be a difficult process, but once 
completed, each independent piece serves a 
unique purpose. And when all of the pieces are 
put together, the whole structure functions like 
a single entity. In the case of an application, 

this means moving away from the single, large 
codebase to smaller isolated services, all 
communicating with each other to deliver the 
functionality of the whole application together. 
And since you’re likely to have existing traffic 
and clients using the application, there needs to 
be a way to keep the LEGO structure functional 
even during refactoring.

New paradigms, patterns, and foundations are substantially shaping the industry, and we’re 
entering a new era of technological and cultural changes. Open source software has always been
an important contributor to the industry, but in this day and age, it’s becoming a catalyst for 
enterprise adoption of new paradigms and architectures.

We’re living in a revolutionary age for software, with massive changes 
in the way we build, deploy, and consume our applications or “services.” 
These changes are not just technical but organizational.

Introduction



© Kong Inc. Making the Move from Monolithic Architectures to Microservices4

Microservices offer much more flexibility when 
deploying or updating the application thanks to 
shorter and more focused development cycles. 
This carries over into a far more efficient overall 
application development process as dev teams 
can be broken down into smaller groups, such 
as “pizza teams,” which can work independently 
while evolving the application as a whole. 
Also, microservices enable an application to 
be much easier to scale, which aligns with any 
existing or potential cloud strategy.

Ironically, some of the characteristics of 
a microservices architecture which are 
considered benefits, can also be seen as 
drawbacks and may make one want to consider 
staying with a monolithic architecture.

While microservices provide greater flexibility 
in overall application development and 
management, it also increases the complexity 
due to the need for more coordination and 
communication for deploying microservices.

There are simply more plates to spin. This will 
also impact the performance of the application. 
A monolith is a single, self-contained codebase 
so application performance considerations are 
essentially confined to development. Whereas 
microservices, which can be widely distributed, 
require greater demand from the network in 
order for each microservice to communicate 
with each other toward a common objective.

These are only a handful of the pros and cons 
organizations should consider when deciding 
between microservices or monolith, but 
performance, deployability, and scalability are 
definitely going to be at the top of the list.

What are the overall goals of the organization and what characteristics of the application 
architecture will best achieve these goals? The pros and cons of moving to a microservices 
architecture are both equally compelling. 

Should you blow up your monolith? This is a good question to ask 
before dedicating the time and resources needed to undertake a 
move to microservices. 

Should you blow up your 
monolith?



© Kong Inc. Making the Move from Monolithic Architectures to Microservices5

With microservices, it’s common for developers 
and architects to focus too much on the size 
of code blocks of services decoupled from the 
monolithic codebase. But the reality is that 
these services will be as big as they need to 
handle their specific business logic. Too much 
decoupling, and you may end up with too many 
moving parts. There’s always going to be time 
in the future to decouple services even further 
as you learn the pain points of building and 
operating under this new architecture.

Another important consideration to keep in 
mind as you transition to microservices is that 
your existing business will still be running and 
growing on the monolith. Therefore, “shared 
responsibilities” can win the day, with the 
development efforts split into two smaller 
teams: one that maintains the old codebase, 
while the other one works on the new 
codebase. 

Doing this requires a keen eye on resource 
allocation, as this split workload can cause 
friction between the two teams as maintaining 
a large monolithic application isn’t as exciting 
as working on new technologies.

This problem can be solved in a larger team by 
introducing a rotation between the two projects 
for team members. This exposes all team 
members to new development tasks and builds 
new skills while keeping fresh eyes on the 
monolithic codebase.

This brings us to the next consideration: time. 
The truth is that transitioning to microservices 
won’t happen overnight — no matter how hard 
you think about it and how much you plan for 
the transition.

Before starting a transition initiative, identify the biggest pain points and boundaries in the 
monolithic codebase and decouple them into separate services. Don’t put too much energy into 
the “sizing” of these services as it pertains to the amount of code behind them. It’s much more 
important to make sure these services can continue to handle their specific business logic within 
the boundary to which they’re allocated.

As mentioned, a common driver for a move to microservices is 
the difficulty of maintaining a monolithic codebase and the desire 
to achieve greater business agility. But this doesn’t mean that 
transitioning to microservices is always simple.

Considerations when 
adopting microservices



© Kong Inc. Making the Move from Monolithic Architectures to Microservices6

The main difference between the two patterns 
is that an asynchronous system won’t directly 
communicate with another microservice 
but will instead propagate an event 

“asynchronously” to which another service can 
intercept and react. (Usually, log collectors like 
Apache Kafka can be used, but also RabbitMQ 
or cloud alternatives like AWS SQS.)

Even today, the narrative seems to be exclusively pushing for service-to-service communication, 
although that’s not necessarily the best way to implement some very specific use cases.

Besides the circumstances described above, one of the biggest 
lessons to learn is understanding when to use service-to-service 
communication patterns as opposed to asynchronous patterns.

Figure 1: Service-to-service communication example — notice the “sidecar” characteristic of this option

Figure 2: Asynchronous communication from service to service through a proxy

Two ways for microservice 
communication

This pattern is very useful when an immediate response isn’t required since it basically 
implements error handling within the architectural pattern from the beginning. Therefore, it 
makes a great candidate to propagate eventually consistent data state changes across every 
microservice avoiding creating inconsistencies.



© Kong Inc. Making the Move from Monolithic Architectures to Microservices7

Ideally, microservices-oriented architecture will leverage all of these patterns depending on the 
use case, but service-to-service isn’t the only answer.

Communications scenarios

Let’s assume that you have two microservices, “Orders” and 
“Invoices,” and that every time an order is made, an invoice also 
needs to be created.

two ways for microservice communication

In a service-to-service pattern, the “Orders” 
service will have to issue a request to 
“Invoices” every time an order is created. But if 
the “Invoices” microservice is completely down 
and not available, eventually that request will 
timeout and fail. This would be true even if the 
request was issued by an intermediate proxy 
— it will still try to make the request over and 
over again but eventually, it will timeout and fail 
leading to data inconsistency.

With an asynchronous pattern, the “Orders” 
microservice will create an event into a log 
collector/queue that will be asynchronously 
processed by the “Invoice” microservice 

whenever it decides to poll or listen
for new events. Therefore even if “Invoices” 
is currently down for a long period of time, 
those invoices won’t be lost and the data will 
be eventually consistent across the system as 
soon as the microservice goes online again 
(and assuming that the log collector will persist 
the events).

Using a system like Apache Kafka also makes 
it easy for the developer to replay a series of 
events starting from a specific timestamp in 
order to reproduce the state of data at any 
given time either locally or on staging.

Figure 3: Differences between service-to-service and asynchronous communications



© Kong Inc. Making the Move from Monolithic Architectures to Microservices8

These preparation tasks are fundamental to the success of the transition and can’t be overlooked.

Now that there’s an understanding of what monolithic and 
microservices bring to the table, it’s time to think about approaching 
the technical transition. Different strategies can be adopted, but all 
of them share the same preparation tasks: identifying boundaries 
and improving testing.

A technical look into the 
transition

Boundaries

The first thing to figure out before starting the 
transition is what services need to be created 
or broken out from the monolithic codebase 
and what your architecture will look like in a 
completed microservices-based architecture, 
how big or how small you want them to be, and 
how they will communicate with each other. A 
starting point is to examine the boundaries that 
are more negatively impacted by the monolith, 
for example, those that you deploy, change, or 
scale more often than the others.

Testing

Transitioning to microservices is effectively a 
refactoring.Therefore, all the regular precautions 
followed before a “regular” refactoring also 
apply here — in particular, testing. 

As the transition proceeds, so do changes 
to how the system fundamentally works. It’s 

important to be mindful that, following the 
transitional phase, all the functionalities that 
once existed in the monolith are still working in 
the redesigned architecture. 
 
A best practice here is before attempting any 
change to include a solid and reliable suite 
of integration and regression tests for the 
monolith.

Some of these tests will likely fail along the way, 
but having well-tested functionality will help 
track down what isn’t working as expected.

Transition strategies

There are several strategies to choose from 
when transitioning to microservices, each with 
their respective pros and cons which should be 
considered prior to this process.



© Kong Inc. Making the Move from Monolithic Architectures to Microservices9

Ice Cream Scoop Strategy

LEGO Strategy

Nuclear Option Strategy

Pros: Gradually migrating with reduced risks 
and without affecting much of the uptime 
and the end user experience.

Pros: A faster migration with less work on 
the monolith.

Pros: Allows the organization to rethink 
how things are done, effectively rewriting 
the app from scratch.

Cons: It’s a process that will take time to 
fully execute.

Cons: The monolith will continue to have 
its original problems, and new APIs will 
most likely have to be created to support 
the microservices-oriented features. 

Cons: It requires rewriting the app from 
scratch, which can introduce additional 
operational overhead.

This strategy calls for a gradual transition from 
a monolithic application to a microservices-
oriented architecture by “scooping out” 
different components within the monolith into 
separate services. 

This transition is gradual and there will 
be times when both the monolith and the 
microservices will exist at the same time.

This third strategy is rarely adopted. The 
entire monolithic application is rewritten 
into microservices all at once, perhaps still 

supporting the old monolith with hotfixes and 
patches but while building every new feature in 
the new codebase.

For organizations that believe their monolith 
is too big to refactor and prefer to keep it as 
it is, this strategy advocates for only building 
the new features as microservices. Effectively, 
this won’t fix the problems with the existing 

monolithic codebase, but it will fix problems 
for future expansions of the product. Basically, 
this option calls for stacking the monolithic and 
microservices on top of each other in a hybrid 
architecture.

The LEGO strategy helps buy some time on the big refactor but ultimately runs the risk of adding 
more tech debt on top of the monolith.

An outcome of the nuclear option that should also be considered is that you may end up with a 
“second system syndrome” where end users will be affected by a stalled monolith until the new 
architecture is ready for deployment.



© Kong Inc. Making the Move from Monolithic Architectures to Microservices10

Sometimes some services will indeed use 
the same underlying database technology. 
Although it would still be better to have 
separate database clusters dedicated to each 
microservice, for low throughput use cases, 
sometimes it’s just too convenient to
leverage the same datastore nodes but with 
data stored in different logical databases/
keyspaces. The cons of this solution are 
that if a  microservice — for whatever reason 
— impacts the database uptime, then the 
other microservices will also be impacted 
since they’re talking to the same database 
nodes. This should be avoided since it breaks 
compartmentalization.

Regardless of setup, consistency of data 
will be an issue. There’s going to be a limbo 

period when the old codebase is still writing 
and reading to the underlying database, and 
the new database for microservices is using 
a separate store for data. Therefore, writes or 
reads made by the monolith won’t be visible 
to the microservice and vice-versa. This isn’t 
an easy problem to solve, and there are a few 
options to consider, including:

• Writes from the monolith are also 
propagated to the microservice database 
and vice versa.

• Building an easy-to-use API for the old 
database that the microservice will use to 
query data from the old database.

• Introduction of an event collector 
layer (like Kafka) that will take care of 
propagating writes to both data stores.

The end goal for the new microservice-oriented architecture is to not rely on one database that 
every service utilizes. Since this new architecture requires decoupling the business logic in 
different services, you will also want to decouple the database access and have one database 
for each microservice. Sometimes this is inevitable. For example, a microservice that handles 
users and their data will benefit from a relational datastore while a microservice that deals with 
orders or logs will benefit from high-performance writes to an eventually consistent datastore 
like Cassandra.

Figure 4: Ensuring data consistency through the use of an event collector which will write to specified data stores

The Database



© Kong Inc. Making the Move from Monolithic Architectures to Microservices11

Therefore, updates for improved performance 
and bug fixes can be made as long as there’s 
no change to the API interface (e.g., how 
requests are being made, their parameters, 
and the response payload). This ensures that 
other microservices will still be able to work 
like nothing ever happened.

Every time a change is made, you don’t want 
to route all the traffic to the new version of the 

service, as that would be a risky move as any 
bugs would impact the application. Instead, 
gradually move traffic over, monitor how the 
new version behaves, and only when confident 
of its performance, transition the rest of the 
traffic. This strategy is also called a canary 
release and reduces the downtime caused by 
faulty updates.

These routing capabilities will both be required when decoupling the monolith and once the 
decision to upgrade microservices to a different version is made.

Every microservice will be accessible by some sort of API and will be consuming other services 
via their API, being totally agnostic of their underlying implementation.

Figure 5: Incremental rerouting of traffic from monolith to microservices through a load balancer

Routing and versioning



© Kong Inc. Making the Move from Monolithic Architectures to Microservices12

These routing capabilities will both be required when decoupling the monolith and once the 
decision to upgrade microservices to a different version is made.

Figure 6: How rerouting through an API gateway will occur as a decoupling from monolith to microservices 
architecture proceeds

In general, libraries that deal with specific 
logic, which eventually will be implemented 
by only one microservice, don’t cause any 
problems. However, updates to a library used 
by multiple microservices simultaneously 

can cause problems, since any update will 
trigger multiple redeployments across multiple 
services — which should be avoided as it 
brings back old memories of the monolith.

This approach needs to be realistic and not too ambitious. You don’t want to be applying too 
many changes all at the same time. Depending on the codebase, it may be useful to decouple 
monolith business logic in third-party libraries that can be then used by both the monolith 
and the microservice. That also gives the benefit of reflecting any bug fix or performance 
enhancement on both codebases while in the monolith-microservice limbo.

Libraries and security



© Kong Inc. Making the Move from Monolithic Architectures to Microservices13

Authentication and authorization were 
concerns handled internally by the monolith, 
which can also be implemented within a 
library, or implemented in a separate layer 
of the architecture like the API gateway. 
Sometimes a re-design of how authentication 
and authorization are being handled will be 
needed to account for scalability as more and 
more microservices are added.

Security between microservices should be 
enforced with mutual TLS (mTLS) to make 
sure that unauthorized clients within the 
architecture won’t be able to consume them. 

Logging should be enabled across the board 
to observe and monitor how the microservices 
are behaving.

At this point, observability becomes a key 
requirement to detect anomalies, latency, 
and high error rates since there are so many 
moving parts. Therefore, a good rule of thumb 
will be to configure health checks for each 
service, and circuit breakers that can prevent 
cascading failures across the infrastructure if 
too many errors occur.

With that said, there are so many different use cases on the topic that a one-size-fits-all answer 
would be hard to give. Generally, whatever roadblock prevents a microservice from being 
deployed independently or being compartmentalized should be removed in the long run.



© Kong Inc. Making the Move from Monolithic Architectures to Microservices14

The service mesh pattern also introduces 
familiar networking concepts like the control 
plane for administering our system, and 
the data plane for processing our requests. 

Both planes communicate together so that 
configuration can be propagated and metrics 
can be collected.

Kubernetes provides many features out of the box, including facilities to scale up and down 
workloads, service discovery, and networking capabilities to connect microservices. In addition 
to this, service mesh aims to create microservices-oriented architectures by providing a 
pattern to perform service-to-service communication and delegates operations like connection 
management, security, error handling, and observability to a third-party proxy that is usually run in 
a Kubernetes sidecar alongside our microservice processes. 

Using containers — like Docker — isn’t technically required, 
although leveraging orchestration tools like Kubernetes, the de 
facto container orchestration platform, can make life a lot easier if 
this is the chosen path.

Containers and service mesh



© Kong Inc. Making the Move from Monolithic Architectures to Microservices15

Therefore, enterprise organizations across industries are either approaching or deploying 
microservices-based architectures that can help with the pains of a growing codebase and 
larger teams. It’s both a technical and an organizational transition as it requires not only 
decoupling code but development team structures as well.

Such a radical shift can’t be achieved without 
a long-term plan and preparation tasks 
that will help with a successful transition, 
including a good testing strategy. It’s also 
a feat that’s not going to happen overnight, 
and will most likely include transition 
implementations built along the way, 
that will have to be removed later on, for 

example when dealing with legacy database, 
authentication, or authorization functionality. 

But once the hard work is done, and the 
transition is complete, a microservices-based 
architecture will enable the organization 
to be far more nimble and enable greater 
velocity in the evolution of the application.

Transitioning to microservices is a significant engineering investment 
with equal returns for applications that reach a certain scale.

Conclusion



© Kong Inc. Making the Move from Monolithic Architectures to Microservices16

Konghq.com

Kong Inc.
contact@konghq.com 

77 Geary Street, Suite 630
San Francisco, CA 94108
USA

http://Konghq.com?utm_medium=content&utm_source=kong&utm_campaign=ebook-api-best-practices
mailto:contact%40konghq.com?subject=

