
Web Services

Agenda

SOA
API

Restcountries API - Code

Spotify API - Code

ToDo FastAPI App - Demo

Tue Hellstern



Why We Need
Software Architecture
Architecture-less software becomes
unmanageable with time and hence
enhance the maintenance cost
drastically with every new iteration.

As each and every change becomes
costlier, this approach is termed as
Big Ball of Mud



Architectural approaches
Over the years of evolutions in software design, developers have come up with different
architectural approaches in order to avoid the issues of architecture less software
design - Big Ball of Mud.

The most famous ones.

Layered Architecture

Tiered Architecture

Service Oriented Architecture (SOA)



Layered Architecture
This approach works on principle of separation
of concerns.

Software design is divided into layer laid over
one another. Each layer performs a dedicated
responsibility.

Architecture divides the software into the
following layers

Presentation Layer
Business Logic Layer

Data Link Layer



Layered Architecture
Advantages

Simpler to implement
Abstraction due to separation of concerns among layers

Isolation between layers

More manageable due to low coupling

Disadvantage

Less scalability

Monolith structure, lacking ease of modifications
Data has to flow from each layer one after another



Oracle



Tiered Architecture
Divided the software into into tiers based on client server communication principle.

Can have one, two of n-tiered system separating the responsibilities among data
provider and the consumer.



Single Tiered System
In this approach, single system is responsible to work as client as well as server and
can offer ease of deployment eliminating the need of Inter System Communications
(ISC).

This system are suitable only for small scale single user application and should not be
used for multi user complex applications.



2-Tiered System
This system consist of two physical machines

server
client

It provides isolation among the data
management operations and data processing
and representation operations.

Client holds Presentation, Business Logic
and Data link layer.

Server holds the Data stores such as
Databases



3-Tiered / n-Tiered System
Highly scalable both horizontally and vertically.
Implementing n-tiered architecture is generally costlier
but offer high performance. Hence it is preferred in large
complex software solutions.

It can be combined with advanced Service Oriented
Architectural style to generate highly sophisticated
model.

It is recommended to use this architecture when the
software is complex and requires performance as well as
scaling as it can be a costlier approach in terms of
resources as well as time.



Difference between Layers and Tiers
Layer
Layers are the logical separation of code

Presentation Layer or UI Layer
Business Layer or Business Logic Layer

Data Access Layer and/or Data Layer

Tiers
Tiers are the physical deployment of layers

Presentation Tier - UI Tier
The Application Tier or Business Tier

The Data Access Tier

The Database Tier – SQL Server, MySQL



SOA









SOA - Service
Oriented Architecture
SOA can be described as an
approach to the development
process, which, based on the
business, leads to the development,
acquisition and use of IT solutions as
a set of business support, reusable
and flexible services.



SOA organize contexts in a vertical way

Multiples components can be part of the same service providing multiples
capabilities (operations)

An SOA service is like a bounded context

SOA fosters reuse and composition inside the same domain
Each SOA service represents a group of smaller components

In SOA, it is common to see all services using the same technology stack and the
same database technology





API



What is an API?
Find the best, in your opinion, description of an API

Come up with some examples of API's



What is an API?
API stands for Application
Programming Interface

But what is a Interface?



Interfaces
Every device you use has some kind
of interface.

We use these interfaces to get the
device to do the thing we want.

We don't need to understand the
underlying functionality.



Abstraction
API's provide a layer of abstraction for the user.

Abstraction hides everything but what is
relevant to the user, making it simple to use.

An API is how applications talk to each other



API - Application Programming Interface
API is a software intermediary that allows two applications to talk
to each other.

You can ask an API for data, and they API will return what you want,
usually in the form of JSON or XML. You can then use the data in
your application.

Every time you use an app like Facebook, send an SMS, or check the
weather on your phone, you’re using an API.



API's as a way to serve your customers
Some companies are packaging API's as products.

Weather Underground sells access to its weather data API

www.wunderground.com

e-conomic has an API where the customers can access there data

www.e-conomic.com

When a company offers an API to their customers, it just means that they’ve built a set of
dedicated URLs that return pure data responses — meaning the responses won’t contain
the kind of presentational overhead that you would expect in a graphical user interface
like a website.



OpenAPI
There is the OpenAPI Specification
(OAS), a technical specification that
describes certain APIs, and there is
the OpenAPI Initiative (OAI), an
organization that enables
specifications like OAS to thrive.

www.openapis.org

https://www.openapis.org/


What is the difference between a Web service and an
API?
An API is an interface that allows you to build on the data and functionality of another
application, while a web service is a network-based resource that fulfills a specific task.

Yes, there's overlap between the two:

All web services are API's

Not all API's are web services

Web services require a network. APIs can be on- or offline, web services must use a
network

Web services are usually associated with SOA

API's are protocol agnostic. API's can use any protocols or design styles - Web
services use SOAP, REST, UDDI, XML-RPC



FastAPI
FastAPI is a modern, fast (high-
performance), web framework for
building APIs with Python 3.7+
based on standard Python type hints.



FastAPI Introduction - Build Your First Web App - Python TutorialFastAPI Introduction - Build Your First Web App - Python Tutorial

https://www.youtube.com/watch?v=0RS9W8MtZe4


Flask <> FastAPI

When to use Flask?

To develop web applications

To develop quick prototypes

When to use FastAPI?

To develop APIs from scratch
To lower the number of bugs
and errors in code





Microservices,
SOA, and API's
combined

https://developer.ibm.com/tutorials/1601_clark-trs

https://developer.ibm.com/tutorials/1601_clark-trs


API DEMO



API -
restcountries

Python file - .py

Jupyter Lab -
.ipynb

https://pypi.org/project/python-restcountries

https://github.com/officegeek/image/raw/main/code/restcountries.py
https://github.com/officegeek/image/raw/main/code/restcountries.ipynb
https://github.com/officegeek/image/raw/main/code/restcountries.ipynb
https://pypi.org/project/python-restcountries


Spotify API
Spotify provides software and app developers
access to some of their data about users,
playlists, and artists through a Web API.

Spotify_API_Spotipy.pdf

Jupyter Lab Code .ipynb

Python Code .py

https://github.com/officegeek/image/raw/main/pdf/Spotify_API_Spotipy.pdf
https://github.com/officegeek/image/raw/main/code/Spotipy.ipynb
https://github.com/officegeek/image/raw/main/code/Spotipy.py


Newscatcher
Demo GitHub Reporitory

https://newscatcherapi.com

https://github.com/TueHellsternKea/newsapi
https://newscatcherapi.com/


IBM - SOA
SOA for Dummies

https://github.com/officegeek/image/raw/main/pdf/SOA_for_dummies.pdf


Links
https://martinfowler.com/microservices

https://www.ibm.com/cloud/learn/soa

https://morioh.com/p/422b616d71a2
https://fastapi.tiangolo.com/

https://martinfowler.com/microservices
https://www.ibm.com/cloud/learn/soa
https://morioh.com/p/422b616d71a2
https://fastapi.tiangolo.com/

